关键词 > Economics代写

Network Economics Assignment 1 2022

发布时间:2022-08-30

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Network Economics

Assignment 1

August 20, 2022

Exercise Lecture 1 [10 points]

Consider a network composed of 3 agents with the following links: 12, 23 31. Compute

(a) the betweenness centrality [2 pt.];

(b) the eigenvector centrality (show all the necessary algebraic steps) [3 pt.];

(c) the Bonacich centrality with 6 = 0.2 (show all the necessary algebraic steps) [3 pt.].

(d) What can you say about individual clustering ? what if a new node, 4, enters in the network and connects with agent 3?  [2 pt.]

Exercise Lecture 2 [10 points]

Consider the co-authorship game from class.  The total utility of a person i adds up the benefit across each of their links ij in the network g

ui (g)   =   j:ijT   +  + ,

=   1 + j:ijT   + ,

In a 5 person version of this game nd the pairwise stable network(s) and the efficient net- work(s)?  [10 pt.]

Exercise Lecture 3 [10 points]

Consider a game played on a network and a nite set of players Ⅳ = X1, 2, . . . , n}. Each node in the network represents a player and edges capture their relationships. We use G = (gij )1ki_jk  to represent the adjacency matrix of a undirected graph/network, i.e., gij  = gji  e X0, 1}. We assume gii  = 0.  Thus, G is a zero-diagonal, squared and symmetric matrix.  Each player, indexed by i, chooses an action xi  e R.  Let x = (x1 , x2 , . . . , x )\ , xi  > 0, Ai (the transpose of a vector x is denoted by x\ ) be the corresponding vector. Each player i obtains the following payoff

πi (x) = αixi _ xi(2) + δ      gij xixj ,

jN

(1)

where αi  > 0.  The parameter δ > 0 captures the strength of the direct links between different players. For simplicity, we assume 0 < δ < /1(n _ 1).

A Nash Equilibrium is a profile x_  = (x1(_) , . . . , x_) such that, for any i = 1, . . . , .., n,

πi (x1(_) , . . . , x_) > πi (x1(_) , . . . , xi(_)1 , xi , xi(_)+1 , . . . , x_), for any xi  e R.                     (2)

In other words, at a Nash equilibrium, there is no profitable deviation for any player i choosing xi(_) .

Let w = (w1 , w2 , . . . , w )\ , wi  > 0, Ai, and I  the n x n identity matrix.  Define the weighted Katz-Bonacich centrality vector as:

b(G, w) = [I _ δG]1w.                                                     (3)

Let M = (mij )1ki_jk  := [I _ δG]1  denote the inverse Leontief matrix associated with network G, while mij  denote its ij entry, which is equal to the discounted number of walks from i to j with decay factor δ .  Let 1  = (1, 1, . . . , 1)\  be a vector of 1s.  Then, the unweighted Katz-Bonacich

centrality vector can be defined as:

b(G, 1) = [I _ δG]1 1 .                                                      (4)

(a) Show that this network game has a unique Nash Equilibrium x_ (G).  Can you link this equi- librium to the Katz-Bonacich centrality vector defined above?  [4 pt.]

(b) Let x_ (G, a) =     i(i)1(京) xi(_)(G, a) denote the sum of actions (total activity) at the unique Nash Equilibrium in part 1. Calculate this value. Determine

xj(_)(G, a)

∂αi         ,

x_ (G, a)

∂αi         .

Interpret the results.  [6 pt.]

Exercise Lecture 4 [10 points]

Consider the following routing game with two routes where l1 ,l2  are the travel times on each route when the fraction of traffic on each route is given by x1  and x2 . The parameters a, b satisfy a > 0 and 0 < b < 1. See Figure 1.

(a) Find the optimal routing [3 pt.]

(b) Find the equilibrium routing [3 pt.]

(c)  Suppose everyone values saving an hour of time at $10/hour. What tax and on which route will result in the optimal routing as an equilibrium?  [3 pt.]

(d) What is the maximum ratio of inefficiency of the travel time under equilibrium routing relative to the optimal routing ( ) [1 pt.]

 

Figure 1: Traffic Routing