关键词 > ECON10192/20192

ECON10192/20192 INTRODUCTION TO MATHEMATICAL ECONOMICS 2021-22

发布时间:2022-05-17

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ECON10192/20192

INTRODUCTION TO MATHEMATICAL ECONOMICS

2021-22

SECTION A

Please answer any TWO of Questions 1-3.

1. [30 MARKS] Let z be the month of your birthday.1   Answer each of the following ques- tions:

(a) [5 MARKS] Find the limit of the sequences {xn } and {yn }

ln(1 + z)n           z2       

1+(z +1)n        (z +1)n

(b) [5 MARKS] Using your answer from (a), find the limit of zn  =  1+

(c) [7 MARKS] Prove whether the function g(x,y) = |(z + 1)(xy)  − 1| is continuous on R2 .

(d) [7 MARKS] State the properties that a function must satisfy to be a distance func- tion. Is the function g(x,y) defined above a distance function? Prove or disprove.

(e) [6 MARKS] Prove the following statement: Let ↵ > 0 and consider any function

f : R ! R satisfying the property |f(x) − f(y)|  ↵|x − y| for all x,y, 2 R. Show that f is continuous on R.


2. [30 MARKS] Let z be the month of your birthday. Answer each of the following questions:

(a) [6 MARKS] Write down a zth  order Taylor approximation of the function g(x) = xz

around x = 1. Explain intuitively what the remainder of the polynomial should be.

(b) [6 MARKS] Formally define a quasi-concave function.  Prove whether g(x)  is a

quasi-concave function.

(c) [8 MARKS] Suppose f is di↵erentiable on X. Prove the following statement using the Mean Value Theorem: If  ≥ 0 for all x 2 X, then f is increasing on X.

(d) [10 MARKS] Consider the system of equations

x2 y2 u3 + v2  = pz

2xy + z2 − 2u2 +3v4  = −8

Prove whether you can write u and v in terms of x and y around the point (x,y,u,v) = (2, −1, 2, 1). If yes, calculate the derivative  .

 

3. [30 MARKS] Let z be the month of your birthday. Consider the subset X = [−1,z) [ (z,13] of R and answer each of the following questions:

(a) [8 MARKS] Define the real-valued function f : X ! R as

f(x) = 

Draw this function in a graph and explain formally whether f is continuous on X.

(b) [6 MARKS] Explain whether the set X is compact.

(c) [8 MARKS] Define what it means for a function to be di↵erentiable at x 2 X. Identify points in X where f is not di↵erentiable. Provide formal arguments.

(d) [8 MARKS] Can you guarantee a maximum and minimum of f on X? Find the global maxima and minima, if any.


SECTION B

Please answer ALL parts of Question 4.

4.  [40 MARKS]  Let z be the month of your birthday. Consider a firm with a C2  production technology f(k,l) = k2  + l2 .  It faces prices of 6 and z for inputs k and l respectively. The rm has a capacity constraint of 1 on each input, i.e. the firm can use at-most 1 unit of each input. Inputs cannot be used in negative amounts and the rm produces at-least   units.

(a)  [4 MARKS] Write down the cost minimisation problem of the rm by converting it

into a maximisation of the negative cost function.

(b)  [5 MARKS]  Draw the constraint set in a graph and prove whether it is a compact

set.

(c)  [4 MARKS] Suppose  = 2. Write down the constraint set and explain whether this set is open or closed in R2 .

For the rest of the question, assume  = 1 and the prices that the firms face for k and l are 6 and z respectively.

(d)  [7 MARKS] Argue that we can  ignore the constraints k  1 and l  1  in the optimisation problem.

(e)  [10 MARKS] Write down the Lagrange function and nd all its critical points.

(f)  [5 MARKS]  Calculate the amount by which optimal cost for the rm will rise if  is

doubled from the original value.

(g)  [5 MARKS]  Intuitively explain how your answer would change if the capacity con-

straint for capital is reduced to 0.5.