关键词 > MATH2003J

MATH2003J Optimisation in Economics SPRING TRIMESTER EXAMINATION - 2020/2021

发布时间:2024-05-29

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

SPRING TRIMESTER EXAMINATION - 2020/2021

MATH2003J Optimisation in Economics

1. (a)  Determine whether each of the following statements is True or False. No explanation is needed when answering 1(a)(i) to 1(a)(v).

(i) The set S = [2, 5] Z is convex. [1]

(ii) The following is a pure integer linear programming problem:

Maximize z = 2x1 + 5x2

subject to x1 + 2x2 8

3x1 + 8x2 25

x1 , x2 0, x1 Z [1]

(iii) If the feasible set of the LP-relaxation of an integer linear programming problem is empty, then the feasible set of this integer linear program- ming problem is also empty. [1]

(iv) For the integer linear programming problem:

Maximize z = 25x1 + 50x2

subject to       5x1 + 12x2 80

30x1 + 18x2 220

x1 , x2 0, x1 , x2 Z,

its LP-relaxation is:

Maximize z = 25x1 + 50x2

subject to       5x1 + 12x2 80

30x1 + 18x2 220

(v) The set S = {(x, y) ∈ R 2 : 16x 2 + y 2 < 16} is closed. [1]

(b) Determine whether each of the following statements is True or False.

Briefly justify your answers to questions 1(b)(i) to 1(b)(v).

(i) The function f : R R defined by f(x) = 3x4 16x3 + 24x2  has a local minimum at x = 0. [3]

(ii) The function g : R2 R defined by g(x, y) = x3 + 27y3 3x2 36y + 8  has two critical points. [3]

(iii) This question refers to 1(b)(ii).  The function g has a saddle point at  (2, (iv) The set S = {(x, y, z) R3  : x2 + y2 + z2 < 16 and x > 0} is bounded. [3]

(v) The following is a linear programming problem in standard form for the simplex method:

Maximize z = x1+ 3x2

subject to 5x1 + 6x2 ≤ 20

x2 ≥ 0 [3]

2. Solve the following linear programming problem by the simplex method:

Minimize    z = −8x1 − 5x2

subject to 8x1 + x2 ≥ 72

2x1 + x2 ≤ 21

x1, x2 ≥ 0.         [20]

3. (a) Consider the following linear programming problem:

Maximize      z = 5x1 + 6x2

subject to      x1 + 3x2 ≤ 15

2x1 + x2 ≤ 15

x1, x2 ≥ 0.

(i) Solve the above problem with the simplex method. [8]

(ii) Formulate the dual problem.    [5]

(iii) Determine the optimal solution to the dual problem from the optimal tableau of the original problem.   [3]

(b) Consider the symmetric matrix

A = 3

−1
−1 9 .

Determine whether it is positive definite, negative definite or neither of them.        [4]

4. Letf : R2 R bedened byf(x‘ i) = 12x2 3i2 +12 and consider the constraints

x2 + i2 9   and x i.

(a) Sketch the feasible set in the plane and explain why f attains extrema (maximum and minimum) subject to the above constraints.

(b) Use the Kuhn-Tucker method to find the maximum and the minimum of f subject to the above constraints.

5. (a) Consider the following integer linear programming problem:

Maximize Σ = 15x + 30i

subject to x + 3i 18

x + i 8

x‘ i 0 x‘ i Z.

(i) Formulate the LP-relaxation of the above integer linear programming problem. Solve this LP-relaxation by graphical method. [Q]

(ii) From the results in 5(a)(i), what can you conclude on the optimal value of the objective function of the above integer linear programming problem?

(b) Give an example of a convex set in R2  which is different from R2, the empty set and sets consisting of one single point. Justify your answer. [Q]

(c) Let f : R3 R be defined by

f(x‘ i‘ Σ) = x2 + 3i2 + 3Σ4 6.

Determine whether f is convex. [Q]