关键词 > AMATH351

AMATH 351 - Assignment 1

发布时间:2024-05-28

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

AMATH 351 - Assignment 1

Due date: May 24 at 5:00 pm

The late penalty is 2% per hour.  It is your responsibility to make sure you have time to upload your assignment by the deadline.  You may use the course materials posted on the course website and the optional text as references. You can also discuss ideas with your classmates, the course instructor, and TAs.  Please do not post final answers or give away too much on Piazza; it will be monitored closely. Your submitted work must be written on your own and should indicate your knowledge of the material.

Academic Integrity Declaration (AID): Fill out the Academic Integrity Declaration form and upload it as page 1 to Crowdmark.

I declare the following statements to be true:

.  The work I submit here is entirely my own

. I have not used any unauthorized aids

. I am aware that misconduct related to examinations can result in significant penalties including

failing the course and suspension, as outlined in Policy 71

. I have discussed the assignment with the following people (if any):

. Write your name and the date in the box below, then upload this page to Crowdmark.

Each question should be uploaded separately to Crowdmark.

1. For the following IVPs determine if the IVP has a unique solution; if it does, then determine the interval on which the unique solution exists for each IC given.

(a)  et x′′ + ln(t2 1)x + ln((1 t)2 )x = 4 t2

i. x(0) = 1, x (0) = 1

ii. x = 1 x = 1

iii. xd(3y(−)2) = 1 x ( 2) = 11      dy

(b) ln(x)dx3 tan(π x) = 2 x2 dx

i. y = 0.1, y = 0.2,  y′′ = 0.5

ii. y = 1.1, y = 0.9,  y′′ = 0.4

(c)  (t − 1)p′′ − 3tp + 4p = t(t − 1)   ,  p(−2) = 2, p ( −2) = 1 where t0  ∈ R is given. 2.  Determine if the following sets of functions are linearly independent on R.

(a) x|x| , x2

(b) x, log2 (x), ln(x)

Note: Remember, if the arbitrary functions f1 (x),..., fn(x) are linearly dependent,

then W[f1 (x),..., fn(x)](x0 ) = 0 for all x0 R.  However, the converse is not true in general!

3. Find the Wronskian of two solutions of the DE without solving the DE.

t2 y′′ t(t + 2)y + (t + 2)y = 0    ,    t > 0

4. Consider the following DE

dx(d) (x d(d)x(y)) +x(λ2)y(x) = 0    ,    x > 0

(a)  Solve the DE using the transformation v = ln(x).

(b)  Consider the solutions in the form of y(x) = xr  and show that you get the same solution set as part (a).

5. Use the method of reduction of order to find the second solution of

x2 y′′ 3xy + 4y = 0    (x > 0)

Given the first solution y1 (x) = x2 .

xy′′ + y + αy = 0  ,   x > 0

(i) What is the normal form of the DE?

(ii) For what values of α, the solutions of the DE will be oscillatory?  (have infinitely many zeros) (iii) For what values of α, the solutions of the DE will not be oscillatory?  (have at most one zero)

Justify your answers for parts (ii), and (iii) by referring to the appropriate theorems from the course note.