关键词 > Fluidmechanics

Fluid mechanics

发布时间:2024-05-25

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Question 1 [11 marks]

Figure 1 shows a water jet of diameter D1   =  5  [cm] travelling at V1   =  10  [m/s]  orthogonally impacting the centre of a round plate of diameter D2   =  30  [cm].  After impact, the water spreads out evenly over the  round  plate, with a thickness of h1  = 3 [cm]. The density of water is  1000 [kg/m3] .

Figure 1:  Setup for Question 1; left:  side view, right:  3D view  (not to scale).

(a) [6 marks] Determine  the  magnitude  and  direction  of  the  force  required  to  keep  the  round  plate stationary (the direction should be consistent with the provided coordinate system).  Note that the incoming fluid flow is travelling along they-direction.

(b) [5 marks] Determine the velocity of the fluid at the edge of the plate, V2.

Question 2 [12 marks]

(a) [7 marks] Figure2shows a differential manometer being used to measure the difference in pressure between Points A and B along a pipe. The density of water is 1000 [kg/m3] and the specific gravity of  oil  is  0.9.  Determine  the  pressure  difference  (PA - PB)  in  [kPa].

Figure 2:  Setup for Question 2(a) (not to scale).

(b) [5  marks] In this  question, we will apply the principles of hydrostatics to derive an expression for the buoyant force, Fb.  Consider  a  cube submerged in a stationary fluid of density ρ, as shown in Figure 3

(i) [2  marks] Write  down  separate  expressions  for  the  hydrostatic  (gauge)  pressure  acting  on  the top and bottom faces of the cube.

(ii) [3  marks] The  buoyant force, Fb is defined as the  net upward force acting on an object  partially or fully submerged in a fluid. Using your results from Question 2(b)(i), show that the buoyant force, Fb = ρgV, where ρ is the density of the fluid,g is the gravitational acceleration, and V is the submerged volume of the object.

Figure 3:  Setup for Question 2(b).

Question 3 [25 marks]

(a) [8  marks] When  small  aerosol  particles  or  microorganisms  move  through  air  or  water,  the  Reynolds number is very small (Re    1). Such flows are known as creeping flows. The aerodynamic drag FD on an object in creeping flow is a function only of its speed U , some characteristic length scale L of the object, and the fluid viscosity µ (Figure 4). Use dimensional analysis to determine the relevant Π group(s).  What do the results imply about the relationship between FD and the independent variables (can you generate an equation for FD that is valid to within some unknown constant)?

Figure 4:  Setup for Question 3(a).

(b) [10 marks] A  tiny  aerosol   particle  of  density ρP and   characteristic  diameter DP falls  in  air  of density ρ and viscosity µ (Figure5). If the particle is small enough, the creeping flow approximation is valid, and the terminal settling speed of the particle U depends only on DP , µ, the gravitational constant g, and the density difference between the particle and the surrounding fluid (ρP - ρ).  Use dimensional  analysis to  determine the  relevant Π group(s).  What  do  the  results  imply  about  the relationship between U and the independent variables?

Figure 5:  Setup for Question 3(b).

(c) [5 marks] Manipulate your result from Question 3(a) to generate an equation for the settling speed U of an aerosol particle falling in air (Figure5), using the notation introduced in Question 3(b) for consistency.  Your  final  result  should  be  an  equation  for U that  is  valid  to  within  some  unknown constant. (Hint: for a particle falling at a constant settling velocity, the particle’snet weight must be equal to its aerodynamic drag.) Show that your equation is consistent with the functional relationship derived in Question 3(b).

(d) [2 marks] A tiny aerosol particle falls at a steady settling speed U .  The Reynolds number is small enough that the creeping flow approximation is valid.

(i) [1 mark] If the  particle  size  is  doubled, all else  being equal,  by what factor will the  settling speed change?

(ii) [1 mark] If the density difference (ρP - ρ) is doubled, all else being equal, by what factor will the settling speed change?

Question 4 [21 marks]

Figure6shows a large open tank containing a solvent (density:  790 [kg/m3], viscosity:  2.4 [mPa · s]) that is maintained at a constant level. The solvent is pumped out of the tank through 250 [m] of piping and discharges freely to the atmosphere (Patm =  101.3  [kPa]) at a point 35 [m] above the pump outlet. The internal diameter and absolute roughness of all pipes are 5 [cm] and 0.02 [mm], respectively. The piping system  contains  one  elbow  (Leq =  25D)  and  one  valve   (K =   1.5).   The  pump  is  located  immediately next to the storage tank and draws solvent from a point 5 [m] below the surface of the liquid in the tank. You may ignore pipe entry and exit losses.

Figure 6:  Setup for Question 4 (not to scale).

(a) [14 marks] Assuming the pump has a mechanical efficiency of 70%, what is the brake power required to deliver the solvent at a mass flow rate of 5 [kg/s]?

(b) [4 marks] The vapour pressure of the solvent under operating conditions is 4.4 [kPa]. What is the available  net  positive  suction  head  (NPSHA)?

(c) [3 marks] If  the  pump  is  removed,  and  the  liquid  is  forced  to  flow  by  pressurising  the  space  in the tank above the liquid surface, determine the gauge pressure required above the liquid surface to maintain the flow at 5 [kg/s].

Question 5 [5 marks]

Water is  pumped from a large open tank, through a filter, and back to the tank as shown in Figure7. The power added to the fluid by the pump is 40 [W]. The piping has a length of 35 [m] on the suction side of the pump and 35 [m] on the discharge side, a diameter of 3.5 [cm], and contains one valve and three elbows. The Fanning friction factor is 0.005.  Consider minor losses associated with the pipe entry and exit in your calculations, as appropriate.

Data:

Density  of  water

1000 [kg/m3]

Atmospheric pressure

101.3 [kPa]

Water vapour pressure

2.3 [kPa]

Equivalent  length  of  one  elbow

25D

Resistance coefficient of the filter

12

Resistance coefficient of the valve

6

Resistance coefficient of  pipe entry

0.8

Resistance coefficient of  pipe  exit

1.0

(a) [8 marks] Determine the volumetric flow  rate through the filter in  [L/min].

(b) [6 marks] Calculate the available  NPSH for the flow described above when the pump is located 2.5 [m] below the surface of the water in the tank.

(c) [2 marks] If the required NPSH is 5 [m], will cavitation be a problem? Justify your answer.

Figure 7:  Setup for Question 5 (not to scale).

Question 6 [6 marks]

Carbon dioxide flows at 0.75 [kg/s] from one vessel through a 50 [m]-long pipe to a second vessel which is maintained at a pressure of 3 [bar]. The pressure at the pipe inlet is 5 [bar]. The flow is assumed to be horizontal, isothermal (20C), ideal, and compressible. The Fanning friction factor is 0.005. You may ignore  the  kinetic energy term in  the mechanical energy balance throughout this question.

Molecular weight of carbon dioxide      44 [g/mol]

1 [bar]                                                             105   [Pa]

Universal  gas  constant                                8.314  [J/(mol · K)]

(a) [5 marks] Calculate the  pipe diameter  required.

(b) [3 marks] Calculate the gas velocities  at the pipe inlet and at the pipe outlet.

(c) [7 marks] What is the maximum inlet pressure in [bar] that you would recommend to maximise the flow  rate of carbon dioxide?  What is the gas velocity at the pipe outlet under this condition?