关键词 > ECMT6002/6702

ECMT 6002/6702: Econometric Applications 4

发布时间:2023-06-01

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ECMT 6002/6702: Econometric Applications

1    Practice problems

1. Consider the following linear regression model:

yt = β 1 + β2x2t + β3x3t + ut,    t = 1, . . . , 100.

In the matrix form, we have

y = Xβ + u.

(i) Obtain the variance of the OLS estimator under the assumption that Var (u) = σ I2 . (ii) Obtain the variance of the OLS estimator when

\σ 2   0

 

    Var (u) = Ω =   0

 

  0

 

   

(

0

σ 2

 

0

0

 

0

0

0

. . .

0

0

 

0

0

0

. . .

2σ2

0

 

0

. . .

. . .

 

 

. . .

2σ2 

0

0

0

 

0

0

. . .

0

0 

0   

 

   

 

0   

 

0   

 

   

2σ2)

 

 

 

 

(1.1)

(iii) Explain what will happen in the standard t-test to examine H0  : β2  = 0 if you ignore potential heteroskedasticity.

(Optional) In this case, can you show that Var (j ) is bigger than that under the as- sumption Var (u) = σ 2 I?

- Hint X\ AX is nonnegative definite if A is a diagonal matrix with nonnegative entries.

(iv) Implement White’s heteroskedasticity test with 5% significance level. What is the aux- iliary regression equation?  Suppose that T = 60 and TSS = 1050, ESS = 405 and RSS = 645 are obtained from the auxiliary regression. Let A be the test statistic, B be the relevant critical value and C be defined by

C = −1    if H0  is rejected,                                         (1.2)

Find the value of A + B + C .

(Note) 95% quantile of χ2 (m)

m=3

m=4

m=5

m=6

m=7

7.8147

9.4877

11.070

12.591

14.067

2. Consider the following regression model

yt    = β 1 + β2      x2t       + β3       x3t        + ut,    t = 1, . . . , 100,

wage                         education            university

where

x3t =( 1    if t attended a university ,                                          (1.3)

2    Empirical application

We will consider the ECONMATH dataset again.  Suppose that we have the following regression model:

yt         = β 1 + β2 x2t  + β3   x3t     + β4   x4t    + β5    x5t     + ut ,

Instructions:

1. The dataset contains missing values (see Week 3 tutorial)

2. Compute the OLS estimates and report their standard errors. In R, summary(lm(y ∼ X)) can be used if X is the (T × 5) data matrix.

3. Implement White’s heteroskedasticity test and report the test result. If things are correctly done, you can detect heteroskedasticity; more specifically,

TR2 ≃ 323                                                       (2.1)

and 95% quantile of χ2 (13) is 22.36 (why is the degrees of freedom parameter is 13?)

4. Obtain the heteroskedasticity-robust standard error (i.e., White’s standard error) of each coefficient estimate.  One easy way to do this in R is using“vcovHC”function given in “sandwith”package; specifically, run vcovHC(lm(yX)). Then obtain the t-statistics to examle H0  : βj  = 0. The results must be simiar to

1 ) = 5.16,           2 ) = 16.30,     3 ) = 0.478,           4 ) = 7.82      (2.2)

5. Compare the above results with what you obtained using the usual standard errors in Week

3 tutorial.

6. Obtain the HAC robust standard error of each coefficient estimate. In R“vcovHAC”func- tion given in“sandwith”package can be used; specifically, run vcovHAC(lm(yX)). Then obtain the t-statistics to examle H0  : βj  = 0. The results must be simiar to

1 ) = 5.16,           2 ) = 16.89,     3 ) = 0.495,           4 ) = 8.15      (2.3)

7. This computing exercise is not mandatory. In this example, heteroskedasticity