关键词 > Econ2125\6012

Econ2125\6012, Semester-1 2023 Assignment-2

发布时间:2023-05-29

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Assignment-2

Econ2125\6012, Semester-1 2023

The eigenvalues, eigenvectors in Question-1 needs to be calculated by hand (not by computer).

Questions-1:                                                                                                                             (9 mark)

A car rental company has three locations. Every customer can rent from and return their car to any of these locations. Let x(n) = [x1 (n), x2 (n), x3 (n)]T be the percentage of cars available in the i-th location at time n and A be the matrix whose i,j-entry is the probability that a customer renting a car from location j at time n-1 returns it to location i at time n.

( 0.3    0.4    0.5)

|                          |

A = | 0.3     0.4     0.3  |

|\0.4    0.2    0.2)|

(i)         Write down the equation for dynamics of the system. (ii)        Solve the equation for x(n) .

(iii)       What is the long-run percentage of the cars at each location?

Questions-2:                                                                                                                            (8 marks)

Determine the positive or negative definiteness of the following quadratic form.

2         2         2                                                                  (x1 + x2 + x3 = 0

Questions-3:                                                                                                                           (9 marks)

Consider the following unit cost function

1  n     n

ln C(p) = 2 xxaij lnpi ln pj  with aij  = aji

where pi  is the price of i-th input and aij s are the coefficients .

(i)         C(p) is expected to be homogenous of degree-1, what conditions needs to be imposed on the coefficients to achieve the homogeneity property.

(ii)        The equation for share of each input in costs can be obtained using si  = ? ln pi  .

Find the equation for si .

    ?2 ln C     ]

|L? ln pi ? ln pj |


Questions-4:                                                                                                                          (8 marks)

The economy of Victoria is in equilibrium when the system of equations

2xz + xy + z 2  = 11

xyz = 6

are at x=3; y=2 and z=1. Suppose the premier can change variable z by a simple decree.

(i)         If premier raises z to 1.1, use calculus to estimate the change in x and y.         

(ii)        If x were in the control of premier and not y or z, can this method be used to

estimate the effect of reducing x from 3 to 2.95? Explain your answer.

Question-5:                                                                                                                          (8 marks)

Consider the minimisation problem

Minq Q = (ynXnk qk1)T Ω (yn1 Xnk qk1)

where the subscripts are the dimensions of the matrices. y, X and Ω are known matrices, Ω

?Q

?q

.


(i)   Using matrix derivatives show that q* = (XT Ω1X)1 (XT Ω1y )

(ii)   Let y be the only stochastic term with Var(y) = Ω , show that Var(q* ) = (XT Ω −1X)−1 where Var means variance.

Question-6 (challenge question):                                                                                        (8 marks)

Let  A  be a  K  K  symmetric positive definite matrix and  x and y be two  K 1vectors. Knowing that jex22adx =  when a > 0 , prove the following

R

xT A 1x+yT A 1y

e           2              dxdy =| A |