关键词 > MATH3090/7039

MATH3090/7039: Financial mathematics Assignment 2 Semester I 2023

发布时间:2023-04-24

Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH3090/7039:  Financial mathematics Assignment 2

Semester I 2023

Due Thursday April 27 5pm   Weight 10%

MATH3090 total marks   24 marks

MATH7039 total marks   30 marks

Submission:

• Submit onto Blackboard softcopy (i.e. scanned copy) of (i) your assignment solutions, as well as (ii) Matlab code for Problem 1 (c and d). Hardcopies are not required.

• Include all your answers, numerical outputs, figures, tables and comments as required into one single PDF file.

• You also need to upload all Matlab files onto Blackboard.

General coding instructions:

• You are allowed to reuse any code provided/developed in lectures and tutorials. Notation: “Lx.y”refers to [Lecture x, Slide y]

Assignment questions - all students

1.  (10 marks)  (Yield curve and swap pricing)

Assume that you observe the following yield curve for government’s coupon paying bonds.

• There are a total of 30 bonds.

• For the k-th bond, k = 1, . . . , 30, the maturity is k years.

• The face value is F = $100, 000 and the coupon rate for the k-th bond, k = 1, . . . , 30, is c = 5%. Let C = cF .

• The prices of the bonds (P (k), k = 1, 2, . . . , 30) are given in Table 1.

• Denote by y0,k the spot zero-coupon bond yield curve, and by yk1,k the implied one-year forward rates.

Assume that all the coupon payments are made annually. Use continuous compounding.

a.  (1 mark)  Compute y0, 1 . y0, 1  is

y0, 1  =  log ( )

b.  (1 mark)  Show that

(                                           )

Table 1: Bond prices

k

prices P (k)  

k

prices P (k)  

k

prices P (k)

1

2

3

4

5

6

7

8

9

10

98,828.9817 97,812.0511 96,937.8969 96,159.9962 95,269.2339 94,353.5669 93,276.0334 92,237.8837 91,261.0455 90,214.0597

 

11

12

13

14

15

16

17

18

19

20

89,083.9301 87,944.5962 86,976.3584 85,928.4188 84,982.5065 84,248.2589 83,540.8304 82,911.5228 82,417.0923 82,009.0742

 

21

22

23

24

25

26

27

28

29

30

81,633.1317 81,287.3700 81,087.7608 80,919.5136 80,780.7515 80,669.7282 80,584.8196 80,524.5143 80,487.4060 80,472.1856

Table 2: Table for Question 1 (c)

period k

spot y0,k

forward

yk1,k

1

2

 

30

 

 

c.  (3 marks)  Implement in a Matlab program to compute spot zero-coupon bond yield curve y0,k  and the implied one-year forward rates yk1,k .

Submit Table 2 filled with computed values.

d.  (4 marks)  Suppose you enter into a 30-year vanilla fixed-for-floating swap on a notional principal of $1,000,000 where you pay the fixed rate of 7.5% and the counter-party pays the yield curve plus 1%.

Code in Matlab a program to compute the swap value. Submit a table of results, similar to the table on L5.15.

e.  (1 marks)  Test with different fixed rates and provide a better approximation of the swap rate so that the swap value is near zero (you do not neeed to develop a new code).

2.  (8 marks)  Consider

Bτ(y) = Ct(1 + y)τ −t ,     0 τ T,    y > 0.

This is the time-τ -value of the wealth if you hold a bond with cashflow (Ct;t = 1, 2, . . . , T) until time τ and sell it, assuming the YTM stays at y . Answer the following.

a.  (3 marks)  Derive a second-order Taylor approximation of Bτ(y+∆y)   Bτ(y) (polynomial in ∆y). You do not need to simplify the expression.

Use the Taylor approximation, we can get an approximation of Bτ(y + ∆y)     Bτ(y) is Bτ(y + ∆y)     Bτ(y) = B(y)∆y + B(y)

Where B(y) and B(y) are

B(y) =  Ct(τ     t)(1 + y)τ −t−1

B(y) =  Ct(τ t)(τ 1)(1 + y)τ −t−2

Hence the second-order Taylor approximation is

 Ct(τ t)(1 + y)τ t1y +  Ct(τ t)(τ 1)(1 + y)τ −t−2

b.  (3 marks)  Suppose τ  =  |D| (the absolute value of the duration when the YTM is y). See L4.41. Show that the formula derived in (a) reduces to

B|D|(y + ∆y) B|D|(y) =  (∆y)2  t(|D| — t)Ct(1 + y)|D|−t2 .

Now set |D| = τ ,we can get

D| (y) = — |D|B|D|(y)/(1 + y) = — |D|  Ct(1 + y)|D|−t1 B | (y) =  Ct(|D| — t)(|D| — t 1)(1 + y)τ −t−2

We can get

c.  (2 marks)  Explain why it makes sense to set τ = |D| for immunisation.

3.  (6 marks)  (Bounds for put/call options)

a.  (2 marks)  Let P0  be the time-0 price of a K-strike and T-expiry European put option on a non-dividend-paying stock S .  Also, let Z0  be the time-0 value of a zero-coupon bond maturing at time T . Using the same argument as that in L6.25, show

(KZ0  — S0)+  ≤ P0  ≤ KZ0 .                                                 (1)

b.  (2 marks)  Show (1) using put-call parity and the bound on the call option price as in L6.25.

c.  (2 marks)  Let 0 < K1  < K2 . Let P0(K1) and P0(K2) respectively be the time-0 price of K1- and K2-strike European put option written on the same non-dividend-paying stock,

and with the same expiry. Plot (by hand) ST  '! PT(K2) — PT(K1) and show that 0 ≤ P0(K2) — P0(K1) ≤ (K2  — K1)Z0 .

Assignment questions - MATH7039 students only

4.  (6 marks)  Given a stock whose time-t price is St, consider a derivative that pays ST(2) at maturity T (the writer pays ST(2)  to the holder; the holder pays nothing to the writer). We assume that there is also a zero-coupon bond with maturity T and face value 1, whose time-0 price is Z0 . Let C0  be the arbitrage-free time-0 price of the derivative. Answer the following.

a.  (2 marks)  Suppose ST  can take any positive value with a strictly positive probability (under the physical probability measure P), and hence P(ST  > M) > 0 for any M > 0. Show that the considered derivative cannot be super-replicated if only the stock and bond are available in the market.

b.  (3 marks)  Show that

S0(2)

C0  

Hint: consider a tangent line of x '! x2 .

c.  (1 marks)  Suppose ST  only takes values on [0, 1] (i.e., P(0 ≤ ST  ≤ 1) = 1).  Show that C0  ≤ min(S0, Z0 ).