Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

STAT 404 Fall 2022 Assignment One

1. (50 points) Ch. 13 Exercises : (a) #3.1

(b) #3.2

(c) #3.4

(d) #3.7

(e) #3.10 (a)

2. (30 points) Suppose that X and Y have joint p.m.f.

x

y

P (X = x, Y

=

y)

0

0

0.15

1

0

0.15

2

0

0.15

0

1

0.15

1

1

0.20

2

1

0.20

(a) Generate n = 104 random variables Y1, . . . , Yn using a rejection sampling. You can use a Bernoulli distribution with parameter 1/2 as a candidate (proposal) distribution. Provide the (empirical) marginal p.m.f. of Y based on your random numbers and compare it with the (exact) marginal p.m.f. of Y .

(b) Generate n  =  104  pairs of random variables {(Xi, Yi)}n using a method of

composition with P (X = x Y = y) and P (Y = y). Provide your estimates

of P (X = x), x = 0, 1, 2 (the empirical marginal p.m.f. of X based on your random numbers) and compare them with the exact values of P (X = x) (the exact marginal p.m.f. of X).

(c) Generate n = 104 pairs of random variables {(Xi, Yi)}n using a Gibbs sampler.

Provide your estimates of P (X x, Y y), P (X x), and P (Y y), x = 0, 1, 2

and y = 0, 1 and compare them with the exact values.

3. (20  points)  Let  X1, ..., Xn|θ    Bernoulli(θ),  and  assume  that  you  have  obtained  a

sample with x Σn xi = 710 successes in n = 1000 trials. Suppose that the value

of θ is unknown, and two statisticians A and B assign to θ the following different prior p.d.f.’s pA(θ) and pB(θ), respectively:

pA(θ) = 2θ, for 0 < θ < 1, pB(θ) = 3θ2, for 0 < θ < 1.

(a) Find the posterior distribution that each statistician assigns to θ.

(b) Compute the posterior probability that θ is less than 0.4, P (θ < 0.4|x1, . . . , xn)

based on the prior p.d.f.  pA(θ) using 1   a grid approximation and 2   a Monte

Carlo method, and compare your answer with the exact value using pbeta().

(c) Compute the posterior distribution of the log-odds ϕ = log θ based on the prior

p.d.f. pB

(θ) using a Monte Carlo method.

1θ

(d) Find the Bayes estimate for each statistician based on the following error loss function

L(θ, a) =

(θ  a)2, for θ a,

2(θ a)2, for θ > a

and check whether the Bayes estimates for the two statisticians are different or not, analytically or numerically.

(e) Suppose that two statisticians are to observe a future binomial value x˜ assumed to have a binomial distribution, X|θ  Binomial(10, θ).  Use a Monte Carlo method to compute the posterior predictive variance, Var(X˜|x).