Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

1RA Differentiation Autumn 2022

Problem  Sheet 1

 Questions

Q1. For each of the following functions, determine whether it is injective, surjective, or bijective; moreover, in case it is bijective, find its inverse.

(i) f : R  R defined by f (x) = x4.

(ii) f : R  [0, ) defined by f (x) = x4.

(iii) f : (−∞, 0] [0, ) defined by f (x) = x4.

(iv) f : R  R defined by f (x) = x3 + 1.

Q2. For each of the following pairs of sets, determine whether any of the relations =,

, holds between them. Justify your answers.

(i) N and A = {x  R : 1/x  Q}.

(ii) B {x  R : 3x  Q} and Q.

(iii) C {x  R : 4x  Z} and D {x  R : x   Z}.

(iv) Q and E {x  R : 1/(2  x Q}.

Q3. Write each of the following subsets of R as a union of one or more intervals. Use as few intervals as possible in each case. (Here a singleton a where a R is considered to be an interval.)

(i) [2, 5] (3, 9].

(ii) (−∞, 5) (3, 7].

(iii) (4, 1) (1, 2) ∪ {π}.

(iv) {x R : x2 > 144} ∪ {12}.

(SUM) Q4. Let f (x) = 1 and g(x) = ex. Find the following expressions:

(i) f (2 + x).

(ii) f (2x).

(iii) f (x2).

(iv) f  f (x).

(v) f ( 1 ).

(vi) f g(x).

Q5. Use sign analysis to solve the inequality

x3(x 3)2(x + 4)

x 1  0

and write the set of its solutions by using interval notation.

Q6. (i) Let f : R  R be the function defined by the rule f (x) = x2 x 1. Evaluate

f at:

1, (1 +

  

5)/2, π, x + 1, 3t + y.

Give your answers exactly, not as decimals (so you might involve the symbol

π in your answer, for example).

(ii) The function f : R R is defined by the rule f x 9x, for all x R.

(a) Find the outputs of f corresponding to the inputs:

3, 5/2, 1/2, 1/2, 3/2.

(b) What input has 81 as its output?

(c) Are 0 and 1 outputs of f ?

(d) What is the image of f ?

(iii) Determine whether the rule

“associate to the number x the number y such that y2 = x + 1” defines a function:

(a) from R to R;

(b) from [1, ) to R;

(c) from [1, ) to [0, ).

Q7. Use the Domain Convention to determine the domain and the range of the real valued functions of a real variable defined by the following rules:

(a) f (x) = 2x2 + 1;

(b) g(x) = (2 x)/(3 + x).

Is either of these functions one-to-one? If so, find an appropriate real-valued inverse

function.

Q8. Let f and g be both elementary functions. Show the following functions

M (x) = max{f (x), g(x)};

m(x) = min{f (x), g(x)},

are also elementary functions.

Q9. For each of the following functions, determine its infimum and supremum and whether it has a (global) maximum and/or a minimum.

(a) f (x) = 3x;

(b) g(x) = 1/(1 + x2);

(c) h(x) = sin(2x).

Q10. Prove the following statements by using the definition of limit.

(i) lim 1 = 0.

x→∞ x2 + x

(ii) lim  1  = .

x0 x4

(SUM) Q11. (i) Determine whether the following functions are even or odd (or neither): (a) g(x) = x · 2x1 ,

(b) h(x) = x + sin x,

(c) k(x) = x3 + cos(πx).

(ii) Let a, b  R. Let f : R  R given by f (x) = a sin x + b cos x. What can you say about a and b if f is an odd function? What can you say if f is an even function? Is it possible for f to be both even and odd?

Q12. Prove the following limit by using the definition of limit.

(i) lim x 2 = .

(ii) x→∞  .

lim

x1

3 x = 1

Extra  Questions

[Questions marked with a * may be more challenging than others.]

EQ1. If S is a finite set, we write S for the number of elements of S. The nonnegative integer S is also called the cardinality of S.

(i) Compute |{200, 2, 2}|, |{fish, pear}|, and |{200, 2, 2, 200}|.

(ii) Let A and B be finite disjoint sets, i.e. sets such that A B = . Express

|A B| in terms of |A| and |B|.

(iii) Let A {0, 1, 2, 3} and B {2, 5, 6, 7, 8, 9}. What is |A  B|? Compare it with |A| |B|.

(iv) Let A and B be finite sets. Find a formula for |A  B| in terms of |A||B|

and |A B|. Explain why your formula works.

EQ2. Give examples of:

(i) a function whose domain is not equal to the codomain;

(ii) a function whose domain is not equal to the image;

(iii) a function whose codomain is not equal to the image;

(iv) a function f : R  R such that f  f f ;

(v) two functions f, g : [0,  [0, ) such that f  g and g  f are not equal;

(vi) two different functions f, g : R  R whose restrictions to [1, 0] are equal.

EQ3. (i) By expanding the expression (a  b)2, or otherwise, prove that

a2 + b2

ab  2

for all real numbers a and b.

(ii) Deduce further that

abcd

a4 + b4 + c4 + d4

4

for all real numbers a, b, c and d.

(iii) Is it true that

abc

a3 + b3 + c3

3

for all real numbers a, b and c? Justify your answer.

EQ4. Recall the Triangle Inequality for real numbers: If a, b R then

|a + b| ≤ |a| + |b|.

(i) Using the Triangle Inequality prove that if a, b  R then

|a| − |b| ≤ |a b|.

(ii) Deduce further that if a, b  R then

||a| − |b|| ≤ |a b|.

(iii) For which real numbers a, b does this last inequality hold with equality?

EQ5. Use the Domain Convention to determine the domain of the real-valued function of a real variable defined by the rule

f (x) = x x  2.

Determine the range of this function. Is the function injective? If so, determine its real-valued inverse. If not, restrict the domain in such a way that it is possible to

determine an inverse and find this function. (Recall that, by convention, we always take x to be nonnegative.)

EQ6. What can you say about the real numbers x and a if you are told that, for every

ϵ > 0, |x  a| < ϵ? What if you are told that, for every positive integer n|x  a| <

* EQ7. Let f : (0, ) R.

(i) Prove that, if limx→∞ f (x) = , then f is unbounded.

(ii) Suppose instead that limx→∞ f (x) =  for some  R. Is it necessarily true

that f is bounded in this case? Justify your answer.