Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Semester 2, 2021

CONFIDENTIAL EXAM PAPER

MATH3075: FINANCIAL DERIVATIVES (Mainstream)

1.  [20 marks]  Single-period market model

Consider a single-period market model M = (B, S) on the space Ω = (ω1 , ω2 , ω3 }. We assume that the savings account B equals B0  = 1, B1  = 1 + r = 2 and the stock price S is given by S0  = 11 and S1  = (S1 (ω1 ), S1 (ω2 ), S1 (ω3 )) = (24, 20, 16). The real-world probability P is such that P(ωi ) = pi  > 0 for i = 1, 2, 3.

(a) Find the class M of all martingale measures for the model M and check if the market model M is arbitrage-free and complete.

(b)  Show that the contingent claim X = (8, 6, 4) is attainable and compute its arbitrage price π0 (X) using two methods:

 the replicating strategy for X ,

 the risk-neutral valuation formula.

(c)  Consider the contingent claim Y = (4, 2, -3).

– Find the range of arbitrage prices for Y in M. Is the claim Y attainable in M?

– Find the minimal initial endowment x for which there exists a portfolio (x, ϕ) with V0 (x, ϕ) = x and such that the inequality V1 (x, ϕ)(ωi ) > Y (ωi ) is satisfied for i = 1, 2, 3.

(d)  Consider the extended market  = (B, S1 , S2 ) where S1  = S and S2  is an additional risky asset given by: S1(2)  = Y = (4, 2, -3) and S0(2)  = 1.35.

– Find a unique martingale measure  for the extended market   = (B, S1 , S2 ).

– Compute the price of the claim Z  =  (-2, 5, 3) in the extended market  = (B, S1 , S2 ). Is the claim Z attainable in ?

2.  [20 marks]  CRR model: European contingent claim

Consider the CRR model with S0  = 100, u = 1.4, d = 1.1 and r = 0.25. Let X be a European contingent claim with maturity date T = 2 and the payoff X given by

X = (S2 - S1 + 4)1{S2 S1>15}  =

(a)  Show explicitly that the contingent claim X is path-dependent and compute the arbitrage price process for X using the relationship, which holds for

t = 0, 1,

πt (X) = Bt E   rt 

where  is a unique martingale measure for the CRR model.

(b) Find the replicating strategy ϕ for the claim X and verify if the equality Vt (ϕ) = πt (X) is satisfied for t = 0, 1, 2.

(c) Find a unique probability measure  on (Ω , r2 ) such that the process BS1

π0 (Y) = S0 E .

(d) Let Y and Z be two European contingent claims with maturity T in the general CRR model with any number T of periods. Assume that the equality πU (Y)  = πU (Z) holds for some date U such that 0  <  U  <  T.   Does this assumption imply that πt (Y) = πt (Z) for every U < t < T?

3.  [20 marks]  CRR model: American contingent claim

Consider the CRR model with the horizon date T = 2 and S0  = 8, S1(u)  = 11, S1(d)  = 7. We assume that the interest rate r = 0. Let X α  be an American claim with the maturity date T = 2 and the reward process (gt , t = 0, 1, 2) where g0  = g1  = 12 and the random payoff g2  equals g2  = (14, 10, 10, 18), that is,

g2 (S1(u), S2(uu)) = 14,    g2 (S1(u), S2(ud)) = g2 (S1(d), S2(du)) = 10,    g2 (S1(d), S2(dd)) = 18.

 

(a) Find the unique martingale measure  on (Ω , r2 ) and compute the price process Cα  for this option using the recursive relationship, which holds for

t = 0, 1,

πt (Xα ) = max {gt , Bt E  rt }

with terminal condition πT (Xα ) = g2 . Find the rational exercise time τ0(*)  of this claim by its holder.

(b) Find the replicating strategy ϕ for the issuer of the American claim X α  up to the rational exercise time τ0(*)  and verify if the equality Vt (ϕ) = πt (Xα ) holds up to time τ0(*) .

(c) Find the early exercise premium for the American claim X α .

(d) Determine whether the arbitrage price π(Xα ) is a supermartingale or a submartingale under  with respect to the ltration F.  Find a probabil- ity measure Q on (Ω , r2 ) under which the process π(Xα ) is a martingale with respect to the ltration F.

4.  [20 marks]  Black-Scholes model: European contingent claim

We assume that the stock price S is governed under the martingale measure  by the Black-Scholes stochastic differential equation

dSt  = St ╱r dt + σ dWt,    S0  > 0,

where σ > 0 is the stock price volatility and r is the instantaneous interest rate. Consider a European claim X with maturity T and payoff X = IK - ST I - LST where K > 0 and L > 0 are real numbers.

(a)  Show that the payoff X satisfies X = PT (K) + CT (K) - LST . We henceforth assume that the strike K = S0 erT . Using the Black-Scholes pricing formulae for call and put options, find an explicit expression for the arbitrage price π0 (X).

(b)  Compute the hedge ratio at time 0 for the claim X . Examine the sign of the hedge ratio when L = 0.

(c) Find a unique value of L such that π0 (X) = 0 and show that it satisfies 0 < L < 2. Compute the limits lim T 0 π0 (X) and limg →& π0 (X).

(d) Assume that r = 0.  Show that the process S2  is a submartingale under , that is, the inequality E Ss(2) I rt ) > St(2) holds for all dates 0 < t < s.