Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Homework 2

5115: Dynamical systems in biological engineering (Fall 2022)

Sep 20, 2022 (due by the end of Sep 27)

Problem 2.1 (Analytical) Considering the logistic equation   = f(N) = rN(1 −  ).

(a) using the formula N(t) =  for the solution of the logistic equation, show that N → B as

t → ∞ .

For parts (b) - (d), you should not use the above formula for the solution. Instead, use the following formula derived from the chain rule:

 =  =   = f (N)f(N)

(Here,f (N) means the derivative off(N) with respect to N .)

(b) The graph of N(t) is concave up at times t where N(t) <  .

(c) The graph of N(t) is concave down at times t where   < N(t) < B .

(d) The graph of N(t) is concave up at times t where N(t) > B .

 

Problem 2.2 (Numerical) We will work on Problem 2.1 again, but this time do so computationally. (a) Simulate the logistic equation with an ODE solver. Here, we set r = 0.1,B = 100, and            N(t = 0) = N0 = 1.

(b) With the time trajectory of N(t), you can now compute   numerically using the following formula (think why; you don’t need to answer this)

d2N              N(t + Δt) + N(t − Δt) − 2N(t)

Use the above formula to compute function of t.

d2N

dt2

as the function of t using the time trajectory from (a). Plot

 as the

Problem 2.3 (Analytical) Consider a growth model governed by the diferential equation:

 = rN + qN2

Show that there are no solutions dened for all t > 0 , if q > 0.

Hint: check the solution of the logistic equation.

Problem 2.4 (Numerical) Consider two co-existing bacterial species X and Y . We can generalize the logistic  equation to model both type of bacteria by considering the cost of nutrient during cell growth. (Check slide #4 from Lecture 0920)

{ Y(Y)

Now, simulate the above ODEs and plot time trajectories of X(t) and Y(t) . We set B = 100. But you will need to try a few combinations of rX , rY , X(t = 0) = X0 and Y(t = 0) = Y0  for (a - c).

(a) Find a situation, i.e., a set of (rX , rY , X0 and Y0 ), where X(t) equals to Y(t) for large t(b) Find a situation where X(t) is much larger than Y(t) for large t;

(c) Find a situation where X(t) is much smaller than Y(t) for large t;

(d) For each case above, compute X(t) + Y(t) for large t (you can take the values from the last time step)