Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ASSIGNMENT 4

MATH2301, SEMESTER 2, 2022

(1) Find (using weighted adjacency matrices) the minimum cost of paths between any pair of vertices in the following graph.

 

(2) In class we defined the transitive closure of a relation R on a set S as the smallest relation R\  with the property that R ⊆ R\ . This means that if R\\  is any other transitive relation on S such that R ⊆ R\\ , then R\  ⊆ R\\ . Fill in the details of the proof of the following statement: any relation R on a set S has a unique transitive closure.

•  Suppose that T1 and T2 are both transitive closures of a relation R on a set S .

•  · · ·   Fill this in  · · ·

•  Therefore T1 = T2 .

(3) For each property listed, find an example of a partial order that has that property, with brief justifi- cations. Draw its Hasse diagram.

(a) A partial order that is also an equivalence relation.

(b) A poset with at least two elements, in which every element is maximal.

(4) Let (P, ⪯) be a poset and let A be any subset of P . An element u ∈ P is said to be an upper bound for A if for each a ∈ A, we have a ⪯ u. An element l ∈ P is said to be a lower bound for A if for each a ∈ A, we have l ⪯ a. Further, an element u ∈ P is said to be a least upper bound (lub) for A if:

•  u is an upper bound for A, and

•  if v ∈ P is any upper bound for A, then u ⪯ v .

Similarly, an element l ∈ P is said to be a greatest lower bound (glb) for A if:

•  l is a lower bound for A, and

•  if m ∈ P is any lower bound for A, then m ⪯ l .

With this background, answer the following.

(a) Draw a Hasse diagram of a poset (P, ⪯) and write down a subset A that has an upper bound, but no least upper bound. Justify briefly.

(b) Draw a Hasse diagram of a poset (P, ⪯) and write down a subset A that has a greatest lower bound. Justify briefly.

(c) Complete the following partial proof of the following statement:“If (P, ⪯) is a poset and A ⊆ P has a least upper bound, then the least upper bound is unique.”Write out the third step with full justifications.

(i) Suppose that A ⊆ P has a least upper bound u ∈ P .  (ii) Suppose that v ∈ P is also a least upper bound of A. (iii)  · · ·   Fill this in  · · ·

(iv) Therefore, u = v .

(d) Let S be a finite set and let P be the power set of S with ⊆ as the partial order relation. Let A, B be subsets of S . Find formulas for the lub and glb of {A, B}. Justify briefly, but you do not need to give a formal proof.

(5) Let (P, ⪯) be a poset. We say that P is a lattice if any two-element subset {a, b} of P has both a greatest lower bound and a least upper bound.

(a) Find an example of a poset that has a maximum and a minimum but that is not a lattice. Justify briefly.

(b) Consider the set of positive natural numbers with the partial order a ⪯ b if a | b. If a and b are any two positive natural numbers, describe (with justification) the glb and lub of {a, b} under the above partial order relation. Conclude that the divisor poset of any positive natural number (i.e., the set of all its positive divisors ordered by the above relation) is a lattice.