Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

STATS 731, 2022, Semester 2

Tutorial 3

Question 1: Poisson Process Puzzles

Consider a Poisson process with rate parameter λ . This is the standard greek letter to use — in lectures it was called θ just to remind you that it’s the parameter. In this question, you will look at two different ways of formulating the data proposition. Throughout the question, use a log-uniform improper prior p(λ) ∝ 1/λ .

Suppose that, in the interval from t = 0 to t = ∆t, the number of events is x. The sampling distribution is:

x|λ ∼ Poisson(λ∆t).                                                      (1)

Here’s my picture of a Poisson process from lectures:

 

(a) Find the posterior distribution for λ given x, and show that it is a Gamma distribution.

(b) One property of Poisson processes is that the inter-event times have independent expo-

nential distributions with rate λ . Let the event times be times be t1 ,t2 ,t3 , and so on, so the inter-event times are d1  = (t1 − 0),d2  = (t2 − t1 ), et cetera. What is the probability distribution of tx  (the occurrence time of the xth event) given λ? I just want you to write it down (or look up the result), not derive it.

(c) Use the result from (b) to write down the joint density p(tx ,tx+1 |λ).

(d) An alternative form of presenting the data is to note that the xth event occurred before the end of the time interval [0, ∆t], AND event x + 1 must occur after the end of the interval. Use the result from (c) to find P(tx  < ∆t,tx+1  > ∆t|λ).

(e) Find the posterior distribution for λ given the proposition (tx  < ∆t) V (tx+1  > ∆t). You

should get the same result as in part (a).

(f) In the Auckland region, there have been x = 20 volcanic eruptions in the last ∆t = 20000

years. Find the posterior predictive probability that there will be no eruptions in the next 50 years.

(g) Steve argues that Poisson processes aren’t applicable, giving the following example.

If you asked me to predict the number of car accidents in Australia in July, I would be very uncertain.  However, if I found out the number from June, that would help a lot with predicting July.  Therefore, these two non- overlapping intervals are highly dependent.

However, with Poisson processes, non- overlapping intervals are supposed to be independent. How would you respond to Steve’s argument?