Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ES1960

2020

STATICS AND STRUCTURES

1. The structure shown in Figure 1 has a pin joint at point A, a roller at point B, has a point load of magnitude 20 kN applied to point D and a uniformly distributed load applied between points A and C.

(i)        Determine the reaction forces at A and B                                                 (6 marks)

(ii)        Derive  the  equations for  calculating  the  internal  axial force,  shear force  and

bending moment at any point along the structure.                                   (10 marks)

(iii)       Draw the three diagrams for the internal axial force, shear force and bending

moment.                                                                                                    (9 marks)

 

Figure 1 

2. Figure 2 shows a  plane  pin-jointed truss supported  by a  pin  at  H and a  roller at  F. Dimensions of the structure are as given in Figure 2, and all the angles between members are either 60 or 30 degrees. The frame is subjected to one vertical force of 30 kN at point A and force of 50 kN at point D with an inclination of 45 degrees. All members have the same cross section area A of 300 mm2 and modulus of elasticity, E, of 210 GPa.

(i)        Determine the reaction forces at F and H                                                 (6 marks)

(ii)        Find the forces  in truss members AB, AF,  DG, GH and CD, stating explicitly

whether they are in tension or compression.                                           (14 marks)

(iii)       Calculate the strain in member CD, stating explicitly whether it is contracting or

extending.                                                                                                 (5 marks)

 

Figure 2 

3. A tower  is  built  in  an  area with  high-speed winds  and  it  is shown  in  Figure 3.  It  is schematised as a cantilever column of height H equal to 5 m with applied a horizontal distributed load of magnitude 4 kN/m. The tower has a rectangular cross section area of dimensions b equal to 120 mm and h equal to 200 mm. Modulus of elasticity E is equal to

180 GPa.

(i)        Calculate the second moment of area I of the cross-section about the x axis.

(3 marks)

(ii)       Calculate the maximum horizontal deflection of the column                     (3 marks)

(iii)       Calculate the maximum absolute values of direct stress and shear stress found in

the column (flexure formula is given by G = −   and formula for shear stress is

given by y   =   ( y 2 ), where y is the distance from the neutral axis to either

the top or the bottom surfaces of the cross section, M is the bending moment and

V is the shear force at the considered location).                                     (14 marks)

(iv)       Draw the distribution of both direct and shear stresses as function of h.     (5 marks)

 

Figure 3 

4. The double pinned column shown in Figure 4(a) has an initial length L0  = 12 m and is subjected to an increasing vertical point load acting at point B. The cross section of the column has all dimensions specified in Figure 4(b). The modulus of elasticity is 90 GPa.

(i)        Determine the two second moments of area of the cross-section about the two neutral axes (parallel to Cartesian axes x and z).                                   (12 marks)

(ii)        Determine the elastic critical Euler load for which the column will buckle. (5 marks)

(iii)       In one of the bolts connecting the column to the ground, the state of stresses shown

in Figure 4(c) is generated. Using a method of your choice (if Mohr’s circle method

is  chosen,  the  circle  has  centre  of  coordinates  C = ( , 0)   and  radius

R = ()2  + Tx(2)y), calculate the principal stresses 1  and 2  and the orientation

of     the     element     in     the     configuration     representing     the     principal

stresses.                                                                                                    (8 marks)

 

(a)

(b)

Figure 4

(c)