Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

CH3F8

Advanced Coordination & Bio-Inorganic

ADVANCED ORGANIC CHEMISTRY (CH3F8)

1. ANSWER ALL PARTS:

(a) Consider the ions of Eu and Tb.

(i)     Referring to their electronic structures, suggest why Eu2+ is more stable with respect to oxidation than Tb2+ .

(ii)    Using the equations below, calculate the pH range over which Eu2+ is stable. E = E0 – 0.059pH

Eu3+ + 1e- → Eu2+    E0= –0.35 V

(iii)    Eu3+ and Tb3+ have the same number of unpaired electrons in their valence

shell. Suggest why Tb3+ has a much larger magnetic moment.

(iv)   Briefly   explain  why  the   magnetic   moment   of   Eu3+    increases  with

temperature.

(v)    In a crystalline Eu3+  compound, the emission band associated with the electronic transition 5 D4 → 7 F2 is split into four closely-spaced lines. Briefly discuss whether the compound has a rock salt crystal structure or a D4h coordination environment.

[50%]

(b)    Figure   1  shows  the   primary  and  tertiary  structure  of  a   mammalian

metallothionein. The vertical  lines  indicate  the  boundary  between  the  N-

terminal and the C-terminal domains.

 

Figure 1. Amino-acid sequence and 3-dimensional structure of rat metallothionein-2. Bound Cd2+ ions are shown as purple spheres, and sulfur atoms are shown as orange sticks. N- and C-termini are labelled with N and C, respectively.

 

(i)     How many cysteines participate in binding the three Cd2+ ions in Domain 1, and how many bind the four ions in Domain 2?

Figure  2  shows  a  titration  of this  protein  with  EDTA,  monitored  by  111Cd  NMR spectroscopy, with each Cd2+ site labelled as seen in Figure 1.

 

Figure 2. Titration of 1 mM rat metallothionein-2 with EDTA (from bottom to top), monitored by 111Cd NMR spectroscopy. The ratios shown on the right are molar ratios.

(ii)    Explain  what  can  be  concluded  from  the  spectrum  where  7  molar

equivalents of EDTA have been added to the protein.

(iii)    Explain what can be concluded from the spectra collected in the presence

of lower EDTA molar ratios.

[25%]

(c)    Figure 3 shows pH titrations of the Zn2+ and Cd2+ complexes of another, very small               metallothionein               with               the               sequence SPCTCSTCNCAGACNSCSCTSCSH. For this, the H1 proton resonance of

the C-terminal histidine residue was monitored using 1 H NMR spectroscopy.

 

Figure 3. 1 H NMR titration of a small metallothionein as a function of pH.

(i)     Explain what can be concluded from these data about the metal-binding status of the C-terminal histidine in the two preparations.

(ii)    Which  coordination  chemistry  principle  can  account  for  the  different

behaviour of the two forms during the pH titrations seen in Figure 3? Are your conclusions from part (i) in agreement with this principle? Justify your answer.

[25%]

2. ANSWER ALL PARTS:

(a)      A cytochrome P450-dependent oxygenase enzyme has been identified that

catalyses the sequential oxidation of 1, via alcohol 2, to tetrahydrofuran 3 (Figure 4).

(i)     Draw out the mechanism for the enzyme-catalysed oxidation of 1 to 2.

(ii)    By  consideration  of  the  normal  cytochrome  P450-catalysed  reaction

mechanism, draw a mechanism for the unusual oxidation of 2 to 3. 

  

 

Figure 4.

Replacement of Phe-89 in the active site of this enzyme by tryptophan gave a F89W mutant enzyme which catalysed a different oxidation reaction: converting 1 to alcohol 4 and then carboxylic acid 5.

(iii)    Rationalise why the F89W mutant catalyses a different oxidation, compared

to the wild-type enzyme, and explain the further oxidation to 5.

[50%]

(b)    A 1:2 (Cu:ligand) Cu(II) complex of the quinolone derivative shown in Figure 5

(EXN)  has  been  proposed  as  a  metallo-antibiotic.  The  complex  was

characterised by EPR (Figure 6) and EXAFS (Figure 7) analysis.

 

Figure 5. EXN antibiotic compound

 

Figure 6. Experimental EPR spectrum (solid line) for the Cu(II)-EXN complex. The

dotted line is a simulation (and can be ignored for this question).

 

Figure 7. EXAFS data (radial distribution function) for the Cu(II)-EXN complex (solid line). The dotted line is the fit according to the structural parameters shown in the table.

(i)     What is the d-electron configuration of Cu(II)?

(ii)    What can be deduced about the Cu(II) coordination geometry from the EPR

spectrum? How does this correlate with the d-electron configuration?

(iii)   The molecular formula of the complex was determined as C38 H46 F2N6O8Cu.

Using this information and the EPR and EXAFS data, propose a structure for the complex (depicting first and second coordination shell around Cu(II) is sufficient). Explain how the experimental data support your answer.

(iv)   How would you expect the EPR and EXAFS data to change if the copper

ion was reduced?

[50%]

3. ANSWER ALL PARTS:

(a)  Consider  the  bifunctional  chelator  3  (shown  below)  that  binds  amyloid  beta peptides (a disease marker for Alzheimer’s disease).

Figure 8. Bifunctional chelator 3

(i)     3  can  be  coordinated with  copper-64 or gallium-68 to  produce a  PET imaging agent. Identify the best coordination site for a metal cation and give the coordination number of the resulting complex.

(ii)    Using Table 1, compare the 64Cu-labelled PET agent with its 68Ga-labelled

analogue    for    imaging    purposes.    Discuss    the    advantages    and disadvantages of using a bifunctional metal chelator rather than a  18 F- tagged marker for diagnosis.

Table 1. Parameters for some radioisotopes

Isotope

t1/2

Main emissions

 

 

Decay mode

Decay energy

18 F

1.8 h

Positron (97 %)

0.63 MeV

64Cu

12.7 h

Positron (18%)

Beta decay (39%)           Gamma radiation (0.5 %)

0.58 MeV

0.65 MeV

1.35 MeV

68Ga

1.1 h

Positron (89%)

0.89 MeV

(iii)    How might you modify 3 to become a diagnostic agent that uses a different

imaging modality for detection?

(iv)   Why is it difficult to design a responsive PET imaging agent?

[50%]

(b)    Figure 9 shows the active site of manganese superoxide dismutase (Mn-SOD)

in its Mn(II) resting state.

Figure 9. Active site of Mn-SOD. The central manganese ion is highlighted in green, carbon atoms are grey, nitrogens in blue, and oxygens in red

(i)       Describe the coordination sphere of manganese in this enzyme, including geometry and bound amino acids.

(ii)       How does the coordination geometry differ from what is most frequently

observed for Mn(II)?

(iii)      The redox potential for the Mn(II)/Mn(III) couple in aqueous solution at pH

7  is  +1096  mV.  In  the  enzyme  Mn-SOD,  it  is  393  mV.  Suggest, qualitatively, how the protein may influence the redox potential in this way.

(iv)     Write down the dismutation reaction for superoxide.

(v)      The catalytic cycle of all SODs follows a ping-pong” mechanism. Taking into account your answers to (ii) and (iii), and starting with the resting state shown in Figure 9, suggest a catalytic cycle with four different states.

[50%]