Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

EEEE1005: CW-R1

A LEVEL 1 MODULE, RESITS 2021-2022

ENGINEERING MATHEMATICS

RESIT COURSEWORK

Q1. Sketch with labelled axes the voltage signal (units Volts) described by the function,

V(t) =   cos (2π  ∙ 100 ) ,  for t = 0 to 0.02 seconds.

[8]

Q2.  Calculate the differential of the following voltage function (units Volts) and hence calculate the rate of change of the voltage at t= 2 seconds,

V(t) =  3 e  t cos (3π) .

[7]

Q3. Calculate the indefinite integral of the following voltage signal,

V(t) =  cos (10πt ).

[5]

Q4. The current charging a capacitor with a capacitance of 500 µF is described by the function I(t) =  3e  t  mA. Assuming no charge on the capacitor at t=0, calculate the  charge on the capacitor when t = 0.4 seconds.

[6]

Q5. Sketch with labelled axes a frequency representation V(f) of the following voltage signals,

a)      V(t) =   cos(100 t),

b)      V(t) =  cos(4000 t) ∙ cos(314159 t) .

[7]

Q6. Solve for U1 , U2  and U3  the following simultaneous equations using Gauss Elimination, showing each step of your calculations,

3        ) () = () .

[10]

Q7. Calculate the total complex impedance between terminals A and B in the circuit shown in Fig Q7 below. Give your solution in both Cartesian and polar form.

 

- j 3 Ω

j 4 Ω

 

Figure Q7

[8]

Q8. An ideal voltage source is connected with one resistor, one capacitor, and one inductor as shown in Fig. Q8 below. The source provides an ideal sinusoidal voltage Vs  = 5V (RMS) of frequency f = 50Hz. Underlined quantities are phasors.

-j1Ω

 

 

VC

4

 

 

 

 

 

VLR

 

 

 

 

Figure Q8

a)  Calculate the combined admittance YLR of the resistor and inductor, and the   total impedance ZCLR of the resistor, inductor, and capacitor, presented to the voltage source.

[10]

b)  Using nodal analysis or any other method, and taking VS as the reference phasor, calculate the phasor voltages VLR, and VC  .

[10]

c)  Draw a phasor diagram which clearly indicates that  VS  = VC  + VLR .

[5] 


Q9. Two point charges as described below are located in an (x,y) coordinate system:

q1  = −1nC at point (0m, 2m)

q2  = +8nC at point (-1m, 0m)

Calculate the magnitude and state the direction of the electric field strength at the point (- 1m, 2m) of the coordinate system.

[12]

Q10. An electromagnetic wave propagating in free space has an electric field amplitude of 5V/m. Calculate the energy density of both the electric and the magnetic field, and   the total energy density of the wave.

[6]

Q11. A long and straight copper wire is located along the x-axis of an xyz-coordinate system as shown in Fig. Q11. It carries a current of  A flowing in the positive

x-direction. The wire lies in a uniform magnetic field directed at 45° to the x and y axis as shown in Fig Q11, and with a magnitude of 5T.

Calculate the magnitude and state the direction of the magnetic force on 3m of the wire.

z                               y

Figure Q11

[6]