Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH08064

Fundamentals of Pure Mathematics

Solutions and comments

1. Let (xn )neN  be a convergent sequence of real numbers with xn

Prove that the series

n1+{

n=1

----→ L, where L > 0. n→+o

converges.

[10 marks]

Solution: Since xn  → L > 0, there exists a positive integer N , such that, for all indices n with n > N ,

xn  > .

For all such n we then have

1 < 1

The series     n n辛(1)L/2 converges because 1+L/2 > 1 (p-test). Therefore the series     n n辛(1){

converges (Comparison Test).

2.

(a) Let a, b e R, a < b. Let f : [a, b] → R be continuous in [a, b] and twice differentiable in

(a, b). Let A and B be the points with coordinates (a, f (a)) and (b, f (b)) respectively.

If the line segment with endpoints A and B intersects the graph of f at a point P with P A, B (see gure 1), prove that there exists a real number c in the interval

(a, b) such that f\\ (c) = 0. [10 marks]

Figure 1: Plot for Question 2a.

(b) Let a = -4, b = 1 and f (x) = l北(1)l . The points A(-4, ) and B(1, 1) are on the graph

of f and the line segment with endpoints A and B intersects the graph at a third point P (see gure 2). However, there is no point c in the interval (-4, 1) such that f\\ (c) = 0.  (You are not asked to prove that AB intersects the graph, nor that f\\ doesn’t vanish).

Explain why this doesn’t violate the result of part (a). [5 marks]

Figure 2: Plot for Question 2b.

Solution:

(a) Let (x0 , f (x0 )) with a < x0 < b be the coordinates of P . Applying the Mean Value

Theorem (MVT) to f in each of the intervals [a, x0] and [x0 , b] we see that there exist c1 e (a, x0 ) and c2 e (x0 , b) such that f\ (c1 ) and f\ (c2 ) are equal to the slope of the line segment AB . In particular, f\ (c1 ) = f\ (c2 ). The function f\ satises the hypotheses of the MVT (alternatively, Rolles thm) in [c1 , c2]. Indeed, it is continuous in [c1 , c2] because it is dierentiable all over (a, b), and dierentiable in (c1 , c2 ). It follows that there exists c e (c1 , c2 ) such that f\\ (c) = 0.

(b) We cant apply part (a) to the interval [-4, 1] because f is not dened at 0, and we

cant apply it to [-4, 0) n (0, 1] either because it is not an interval.

3.

(a) Prove, by verifying the ε-δ property (Ross 17.2), that f (x) = is continuous

(b) Let f :  [-1, 1] [-1, 1] be continuous. Recall that by the Intermediate Value

Theorem, there exists at least one x e [-1, 1] such that f (x) = x.   (You are not asked to prove this.)

(i) Prove that if in addition to continuity we have )f (a) - f (b)) < )a - b) for all a, b e [-1, 1], a b then there exists a unique x e [-1, 1] such that f (x) = x.

(ii) In the setting of part (b)(i) either prove that f is monotone or give a carefully

justied example of such a function f which is not monotone.

[15 marks]

f (x) = = , 2(北)

x e [-1, 0]

x e (0, 1]   .

Then  f  is not monotone  as  f  is strictly decreasing for x  < 0 and strictly increasing for x > 0. Applying the reverse triangle inequality we have for x y

)f (x) - f (y)) = │ - │ = ))x) - )y)) < )x - y) < )x - y) .

4. Let G = GL(2, R) be the group of 2 x 2 invertible matrices under the operation of matrix multiplication, and consider the subset H c G of all matrices of the form (北(1) 1(0) ),

with x e R.

(a)  Show that H is a subgroup of G. [5 marks]

(b) What familiar group is H isomorphic to? Show that H is indeed isomorphic to that

group. [5 marks]

Solution:

(a) We check that the set H satisfies the three conditions of the test for a subgroup.

Firstly, the set H is not empty because it contains the identity matrix (0(1) 1(0) ).

Secondly, the set H is closed under matrix multiplication because for any (北(1) 1(0) ) , y(1) 1(0) e H their product is also an element of H:

(北(1) 1(0) ) y(1) 1(0) = y1(0) e H.

Thirdly, the set H is closed under taking inverses because for any  (北(1) 1(0) )  e H its inverse is also an element of H:

( 北(1) 1(0) )_1  = ( 1_北1(0) ) e H.

(b) We claim that the subgroup H is isomorphic to the group (R, +).  To prove this, we  will  show  that  f  :  R  →  H  defined  via  f (x)  =  (北(1) 1(0) )  is  a  bijective  group homomorphism.

Firstly: f is a group homomorphism because

f (x + y) = y 1(0) = (北(1) 1(0) ) y(1) 1(0) = f (x) . f (y).

Secondly: f is injective because

f (x) = f (y)  ==  (北(1) 1(0) ) = y(1) 1(0) ==  x = y

and it is surjective because for any element (北(1) 1(0) ) of H we have a corresponding x e R and

f (x) = (北(1) 1(0) ) .

5. In each of the following cases state whether the given statement is TRUE or FALSE and provide a justification, including specific counterexamples where appropriate.

(a) The function f  : S3 Z3  dened by f (τ ) = o(τ ) - 1 is a group homomorphism.

Here, o(τ ) represents the order of the permutation τ .

(b) The groups Z8  x Z10  and Z40  x Z2  are isomorphic.

[5 marks]

[5 marks]

(c) All proper subgroups of D13  are cyclic. (Recall that a proper subgroup is a subgroup that is not equal to the whole group.) [5 marks]

Solution:

(a) False, because it is not always the case that f (σ o τ ) = f (σ) + f (τ ).  For a specific

counterexample, note that f ((1 2) o (1 2))  =  f (e)  =  1 - 1  =  0 but f ((1 2)) + f ((1 2)) = (2 - 1) + (2 - 1) = 1 + 1 = 2 (mod 3).

(b) True, because both groups are isormorphic to Z8  x Z5  x Z2  and therefore isomorphic

to each other.  Firstly, because 5 x 2 = 10 and gcd(5,2)=1 we have that Z5  x Z2 is a cyclic group of order ten and therefore isomorphic to Z10 .  Thus Z8  x Z10  is isomorphic to Z8  x Z5  x Z2 .  Similarly, because 8 x 5 = 40 and gcd(8,5)=1 we have that Z8  x Z5  is a cyclic group of order forty and therefore isomorphic to Z40 .  Thus Z40  x Z2  is isomorphic to Z8  x Z5  x Z2 .

(c) True. The group D13  has order 26, so by Lagrange’s Theorem, any proper subgroup H < D13 must have order 1 or 2 or 13.

If )H) = 1, then H = {e} =〈< e〉which is cyclic.

If )H) = 2, let h e H such that h e.  By a corollary of Lagrange’s theorem, the order of h must divide )H) and since h e the only possibility is that o(h) = 2. This

implies that )〈h) = o(h) = 2 and since )H) = 2, the inclusion〈h〉c H must in fact be an equality. In particular this means that H =〈h〉is a cyclic group.

If )H) = 13 we argue completely analogously to conclude that also in this situation H is a cyclic subgroup of D13 .

6. Consider the following graph:

Let G denote its group of symmetries. Justify all your answers to the questions below.

(a) How many symmetries does the graph have? [5 marks]

(b) Identify the symmetry group G (in terms of groups you have encountered in FPM).

[4 marks]

(c) Let X denote the set of nine edges of the graph.

Is the action of G on X faithful?

Is the action of G on X transitive?

[3 marks] [3 marks]

(d)  Suppose we want to colour the edges of the graph with n colours. We consider two colourings the same if they are related by a symmetry of the graph.

How many different colourings of the edges are there? [10 marks]

Express your answer as a polynomial in n.

Solution:

(a) There are six symmetries.

2

Here is one way to count them. Number the vertices as follows: 7

6 4

5

(We also label the central edge a’ for use further below.)

Vertices 1, 3, 5 have valency two, while 2, 4, 6, 7 have valency three. Since symmetries preserve valency of vertices, a symmetry can only send vertex 1 to one of {1, 3, 5}.


(Each of these choices is possible, as it is realized by a rotation of the graph.) After choosing where 1 is sent, it remains to choose where its neighbors 2 and 6 are sent. Either they stay in the same relative position (whence the symmetry is a rotation), or they are swapped (whence the symmetry is a rotation followed by a reflection). Altogether, there are 3 x 2 = 6 choices.

Alternatively, the symmetry group of the outer hexagon is

D6  = {e, g, g2 , g3 , g4 , g5 , h, gh, g2 h, g3 h, g4 h, g5 h} ,

where g is a rotation by 60 degrees and h is a reflection about a vertical axis.  The symmetry group of the graph contains precisely the elements of D6 that preserve (i.e., are also symmetries of) the central “star” . These are rotations by 120 degrees and reflections:

G = {e, g2 , g4 , h, g2 h, g4 h}

Therefore, )G) = 6.