Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

STRUCTURAL DESIGN 3  (ENG3046)

2016

Q1       An existing monolithic reinforced concrete beam and slab system forming a T Beam

has the following details:

Slab:   hf  = 100mm & beff = 1100mm

Beam:  h = 500mm overall (400mm down-stand below slab) & bw  = 300mm Materials: As  =  8H25 Bars and fck  = 25N/mm2

First calculate the effective depth d ifthe floor system is within an internal environment and the links are 10mm in diameter. Then working from first principles using clear diagrams determine all the internal stress resultants, the lever-arms between them

and so the ultimate moment capacity of the T Beam.                                              [25]

Q2       A reinforced concrete 2-way floor slab in an all-concrete monolithic frame spans

continuously over various down-stand internal beams and can be considered simply supported at the edge beams with adequate torsion provision. The slab has plan bay sizes of: 6m x 4m, a total factored design UDL (including self-weight) of 22kN/m2   and is to be constructed in C25/C30 concrete with a trial overall thickness =200mm.

(a)

Calculate the effective depth assuming 10mm diameter bar slab reinforcement and a mild internal environment and then determine the mid-span and support

reinforcement quantities for an interior and corner panel.                          [20]

(b)       Clearly show your practical layout for the reinforcement options in a neat plan

sketch.                                                                                                              [5]

Q3

A 350mm x 445mm C25/30 reinforced concrete short column has 4H25 corner bars with a cover of 35mm from the external face of the column to the links.

(a)       Calculate the d and d values in both directions assuming an XC1 environment

and 1 hour Fire Resistance.                                                                              [2]

(b)       Determine the maximum ULS major axis moment this column can carry in

addition to a ULS axial load of 2400kN.                                                         [10]

(c)       In addition to this same ULS axial load, determine the maximum ULS minor- axis moment that this column can withstand.                                                 [5]

(d)       Determine whether a reduced ULS axial load of 1500kN would also allow both of the above moments to be simultaneously carried bi-axially.                     [8]

Q4       A simply-supported steel universal beam (UB) spans 8m and carries a single ULS

factored design load = 75kN on its top flange at either the 1m, 2m, 4m, 6m or 7m positions. Effective lateral restraint will be available at the two end supports and  additionally as described below. Ignore the beam self-weight in all calculations.

(a) If additional in-span lateral restraint for LTB is available only at the single load point, choose one UB section in S275 steel that will be suitable for all five

possible load locations.                                                                                        [10]

(b) If additional in-span lateral restraint is not available at all, choose one other UB     section in S275 steel that will be suitable for all five possible load locations.   [15]

Q5       Renovations to a building require a new 533x210x82 UB to be connected to an

existing 254x254x73 UC using site-bolted web-cleat angles. The maximum                 anticipated beam end reaction is 250kN. Use the “Data for structural Steel Design” for compatible angles and compact dimensioning. Fully design the joint using S275 steel  and Grade 8.8 Bolts placed at 60mm centre to centre bolt spacings.

[25]

Q6       An industrial building is to be constructed on a site with a ground level of 100m

AOD, 60km from the sea, on the outer edges of Manchester. The structure is to have overall plan sizes of: 20m x 60m, with a height to the eaves of 5m, and a further       central rise of 3m to the apex of a symmetrical duo-pitch roof.

Calculate the total net external wind forces on the structure, in both primary directions, for later use in overall stability calculations.

[25]