Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Mathematics 2B - Linear Algebra

2020

1.   (i)   Find a basis for the null space of

A =

!1   2   0     0 ! .

-36

(ii)  Show that v = 5    is an element of null(A). Then compute the coordinate ! 5 !

vector [v]B  of v with respect to the basis B that you found in part (i).

Unseen computation, but similar to those seen in lectures.

(i) The RREF is

0(1) !0

2

0

0

0 0 ! ,

x

so x = is a solution of Ax = 0 ix = -2y and z = w . Hence

!w!

x -2┐    ┌0

null(A) = ((!))! : x = -2y, z = w = span ((! ))! , ((!))! .

Put v1 = [-2, 1, 0, 0]T and v2 = [0, 0, 1, 1]T ; then βv1 , v2 } is a basis.

(ii) By inspection, v = 3v1 + 5v2 , so v is in the nullspace of A and [v]B = ┌ ┐5(3) .

2.

Determine whether the linear transformation

T : R2 R2 ,        T ╱┌ ┐、y(x)  =

is invertible. If it is invertible, compute its inverse.

Unseen, but similar to examples from lectures. T is represented by the

matrix A = , and det A = -1 0, so A is invertible, hence T is

too. The transformation T 1 is represented by

A 1 = = .

So

T 1 ┌  ┐v(u) = .

3.

Let A and B be n ! n matrices and let λ 0 be an eigenvalue of AB . Prove that λ is an eigenvalue of BA.

(Hint:  be careful about the fact that an eigenvalue must have a nonzero eigenvec- tor.)

Unseen. Let 0 v è Rn with ABv = λv. Multiply by B:

BABv = Bλv = λBv.

Put u = Bv; then BAu = λu.

It remains to check that u 0. If u = 0, i.e. Bv = 0, then ABv = A0 = 0, but ABv = λv and λ 0 and v 0, so we have a contradiction. Hence u 0. So λ is an eigenvalue of BA.

4.  Prove that A = 0(1)   1(1)and I2  are not similar.

Unseen. The only eigenvalue of A is 1, with algebraic multiplicity 2. Now

(A - I)v = 0 ←李 0(0) 0(1)┐ ┌   ┐v(v)2(1) = ┌ ┐0(0) ←李 v2 = 0,

so the 1-eigenspace of A is ,t ┌ ┐0(1) : t è R, which is 1-dimensional. Hence A

is not diagonalisable, and so not similar to the diagonal matrix I2 .

5.  Find an orthonormal basis for the subspace W = span(u1 , u2 ) of R4 , where

0(1) u1  = -1   ,

! 2 !

1(0)

u2  =  ((!-11))! .

Unseen, but similar to an example seen in lectures. We rst show that u1 and u2 are linearly independent. Writing the linear combination c1 u1 + c2 u2 = 0 in matrix form and row reducing gives

( 0(1) 1(0) ) (0(1) 1(0))

(-1 -1 ) (0   0 ) ,

! 2      1 !      !0   0!