Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

CSCI 1933 Project 4

Stacks, Queues, and Mazes

2022

1    Instructions

Please read and understand these expectations thoroughly.  Failure to follow these instructions could negatively impact your grade.  Rules detailed in the course syllabus also apply but will not necessarily be repeated here.

• Due: The project is due on July 29 by 11:55 PM.

• Identification: Place you and your partner’s x500 in a comment near the top of all files you submit. Failure to do so may result in a penalty.

• Partners: You may work alone or with one partner. Failure to tell us who is your partner is indistinguishable from cheating and you will both receive a zero.  Ensure all code shared with your partner is private.

• Code: You must use the EXACT class and method signatures we ask for.  This is because we may use a program to evaluate your code.   Code that doesn’t compile will receive a significant penalty.  Code should be compatible with Java 11, which is installed on the CSE Labs computers.  Credit ALL outside references used in completing this project both in the README and within the code that utilizes the referenced material.

• Questions:  Questions related to the project can be discussed on Discord.  This relates to programming in Java, understanding the writeup, and topics covered in lecture and labs. Do not post any code or solutions on the forum.  You may also email TAs if you need additional assistance.

• Grading:  Grading will be done by the TAs, so please address grading problems to them privately through the ticket system on Discord.

• README: Make sure to include a README.txt in your submission that contains the following information:

– Group member’s names and x500s

– Contributions of each partner (if applicable)

– Any assumptions

– Additional features that your project had (if applicable)

– Any known bugs or defects in the program

– Credit ALL outside references used in completing this project both in the README and within the code that utilizes the referenced material.

– Academic Integrity statement


IMPORTANT: You are NOT permitted to use ANY built-in libraries, classes, etc... be- sides java.util.Random, and java.util.Scanner. Double check that you have NO import statements in your code, except for those explicitly permitted.


Code Style

Part of your grade will be decided based on the “code style” demonstrated by your programming. In general, all projects will involve a style component.  This should not be intimidating, but it is fundamentally important. The following items represent “good”coding style:

• Use effective comments to document what important variables, functions, and sections of the code are for.  In general, the TA should be able to understand your logic through the comments left in the code.

Try to leave comments as you program, rather than adding them all in at the end. Comments should not feel like arbitrary busy work - they should be written assuming the reader is fluent in Java, yet has no idea how your program works or why you chose certain solutions.

• Use effective and standard indentation.

• Use descriptive names for variables.  Use standard Java style for your names:  ClassName,  functionName,  variableName for structures in your code, and ClassName .java for the file names.

Try to avoid the following stylistic problems:

• Missing or highly redundant, useless comments. int  a  =  5;  //Set  a  to  be  5 is not helpful.

• Disorganized and messy files. Poor indentation of braces ({ and }).

• Incoherent variable names.   Names such as m and numberOfIndicesToCount are not use- ful.  The former is too short to be descriptive, while the latter is much too descriptive and redundant.

• Slow functions.  While some algorithms are more efficient than others, functions that are aggressively inefficient could be penalized even if they are otherwise correct.   In general, functions ought to terminate in under 5 seconds for any reasonable input.

The programming exercises detailed in the following pages will both be evaluated for code style. This will not be strict for example, one bad indent or one subjective variable name are hardly a problem. However, if your code seems careless or confusing, or if no significant effort was made to document the code, then points will be deducted.

If you are confused about the style guide, please talk with a TA.

Project Structure

Your project submission must adhere to the following rules. Failure to do so will impact your grade.

1. Your submission should be one ZIP file named

<partner1  x500> <partner2  x500> Project4 .zip

2. The ZIP file should contain a single directory (folder) named

<partner1  x500> <partner2  x500> Project4

3. This directory should contain only these 2 files:

• MyMaze.java

README.txt

For example, the following would be a valid project structure:

• shino012 hoang159 Project4.zip

– shino012 hoang159 Project4

* MyMaze.java

* README.txt

If you are working alone, just include your single x500 in the naming of the ZIP file and directory. If you have any questions about this structure, ask a TA.

Credits

This wrieup incorporates ideas from the United States Naval Academy: https://www.usna.edu/ Users/cs/aviv/classes/ic312/f16/project/01/project.html While this link no longer works, it was used as reference for the creation of this project.

It also implements a search algorithm to create mazes inspired by the following Wikipedia article:

https://en.wikipedia.org/wiki/Maze_generation_algorithm#Depth-first_search

While we are pulling ideas from this, do not follow any instructions found on the web links.

2    Introduction

In this project, you will use Stacks and Queues to generate and solve a maze. Maze here is defined as a network of paths designed so there is at least one path from and entrance to an exit.  You will be using a stack structure to randomly generate new mazes, and a queue structure to find the correct path through the maze.

2.1    Files Given

Along with the project write-up, you will be given the following files:

• MyMaze.java The main java class for this project

• Cell.java A helper class for MyMaze

• NGen.java - Both the queue and stack structure will utilize this generic node class

• Q1.java - An interface for a generic queue

• Q1Gen.java - An implementation of a generic queue

• StackGen.java - An interface for a generic stack

• Stack1Gen.java - An implementation of a basic stack

You will not change any of the files given except for the class called MyMaze.  All other files are provided with everything you should need.

2.2    Stack and Queue data structures

Both the stack and queue data structures provided have basic functionality.  Take a look at both classes to ensure you know how to instantiate and use them properly.  They should be similar to the examples you have seen in lecture.

3    Cell

You do not need to change the Cell class, but this section describes how a cell works.  The Cell class has the following attributes:

boolean  visited true if this cell has been visited, false otherwise

boolean  right – true if a right boundary, false if an open right side

boolean  bottom – true if a lower boundary, false if an open bottom

Each of these attributes have setter and getter functions respectively. The Cell constructor initial- izes the cell to have walls on the right and bottom. When we say a cell has been visited, assume we are referring to the visited attribute unless otherwise noted.  The purpose for each attribute will become evident in the MyMaze section below.

4    MyMaze

The MyMaze class is where the majority of the work will take place.  There will be three main functions for the class:

public  static  MyMaze makeMaze(int  level);

public  void  printMaze();

public  void  solveMaze();

More detail about each function will be found in their respective sections.  The MyMaze class will have three main attributes: Cell[][] maze, int  startRow, and int  endRow. The maze attribute will be how the maze is represented. This attribute will have the following properties:

• The maze dimensions will depend on user input in main. The inputs for each level: Level 1: 5x5, Level 2: 5x20, Level 3: 20x20

• The start of the maze will always be on the left: maze[startRow][0] (open on the left)

• The end of the maze will always be on the right: maze[endRow][cols-1] (open on the right)

• All Cells on the top” (row 0) have an implicit top boundary

• All Cells of the “left” (column 0) have an implicit left boundary

• Once initialized, the maze should have a path from the beginning to the end.

For example, a maze of size 5x20 that could be generated is shown in Figure 1 below.

4.1    Constructor

The MyMaze constructor should have the following signature:  public  MyMaze(int  rows,  int  cols,  int  startRow,  int  endRow); It should instantiate the maze attribute: maze  =  new  Cell [rows][cols] and create a new cell object for each index: maze[i][j]  =  new  Cell(). It should also set the attributes startRow and endRow.

4.2    makeMaze

This function should instantiate a new MyMaze object, generate the maze, and then return the new MyMaze object.  This will build a maze from scratch by utilizing a stack.  By choosing randomly which direction to go from a particular cell, and visiting every cell, there should be a path from the entrance to every cell, including the exit.  You can do this by implementing the following search algorithm:

• Initialize a stack with the start index {startRow, 0}. Mark this cell (maze[startRow][0]) as visited.

• Loop until the stack is empty:

– Get the top element off the stack but do not remove it.

– Choose a random neighbor to the corresponding cell that has not been visited and do the following:

* Add the neighbor’s index to the stack.

* Mark the neighbor as visited.

* Remove the wall  (right or bottom boolean) between the current cell and the neighbor cell.

– If each of the current cell’s neighbors have been visited, then it is a dead end.  Pop the corresponding index from the top of the stack.

A neighbor is defined as a cell that is either horizontally or vertically adjacent to reference cell. Not diagonal. The last thing the makeMaze function should do before returning is set the visited attribute of each maze cell to false.

4.3    printMaze

This function will print a visual representation of the maze to the terminal.  There are different ways that you can represent a maze, but one of the simplest is to use vertical bars | as vertical borders, and dashes − − − as horizontal borders. You can use whatever characters you want, but make sure the output is reasonable. You can reference figure 1 as a good example.

You must print an asterisk ’*’in every cell where the visited attribute of the cell is true.  The reason for this is so we can visualize the path that the printMaze() function took when solving the maze. Figure 1 is what is what may be printed to the terminal for a maze of size 5x20.

You are not restricted to how you print off the maze, but it may be easiest to print off the maze by going though each row one-at-a-time.  There may be two special cases depending on how you implement the algorithm.  You may need to remove the walls for the entrance and exit on the border of the maze separate from the loop.

By the end of this function, you should have printed the entire representation of the maze. Do not reset the visited attribute of the cells.

4.4    solveMaze

To solve a maze, we will use a queue to test all possible paths.  The algorithm should work as follows:

• Initialize a queue with the start index {startRow, 0}

• Loop until the queue is empty:

– Dequeue the front index of the queue and mark the corresponding cell’s visited attribute as true.

– If the current cell is the finish point (i.e. the index {endRow, columns-1}), then break from the loop. The maze has been solved.

– Enqueue all reachable neighbors that are un-visited.

At the end of the function, call the printMaze function. An example of a solved maze is figure 1.

4.5    Testing

You are free to do any testing you see fit. You will know the functions are being generated correctly if there exists a path from the entrance cell to every cell of the maze, including the exit cell.

4.6    Grading

The following weight will be given to each category:

• Code Style: 5%

• User I/O: 5%

• makeMaze is working and implements the given algorithm: 40%

• printMaze is correctly outputting a representation of the maze: 25%

•  solveMaze is working and implements the given algorithm: 25%

 

Figure 1: An example of a printed maze (top) as well as its printed solution (bottom).