Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Lecture 2: Stats 217

Summer 2022

This lecture introduces the simple symmetric random walk.

1    Simple symmetric random walk

Take X1 , X2 , ... iid Rademacher random variables (also called symmetric Bernoulli) i.e. P(Xi  =

1) = P(Xi  = −1) = 0.5 for each i. Fix S0  and define Sn  = S0  +  Xi . Then Sn  denotes the

Head and losing $1 for Tail.

1.1    Hitting times

Assume for simplicity, S0   =  0.  Then the wealth at time n, Sn   =   Xi .  We can ask the

What is the probability that the gambler is up by $200 before being down by $100?

•  Suppose the gambler stops playing once she is up by $200 or down by $100.  How many rounds does she expect to play?

•  Suppose the gambler stops once she is down by $100. What is the probability that she will stop? How many rounds does she expect to play?

Is the fairness of the coin crucial in answering these questions?

We will now see that there is a very clean machinery to answer these questions, namely the concept of hitting times. Fix integers A, B > 0 and define

TA, B  := min{n ≥ 0 : Sn  = A or Sn  = −B}

so TA, B  is the rst time the random walk (that is, the gambler) hits A or B .  Also define, for −B  ≤ k  ≤ A, f (k) = P(ST   = A|S0   = k) i.e.  the chance that the gambler reaches A before hitting −B, starting from k .

•  (Question 1) A = 200, B = 100. Want f (0).

•  (Question 2) A = 200, B = 100. Want E(T200, 100 |S0  = 0).

Note that in the definition of f (·), we implicitly assumed that T is a well-defined number i.e. T < ∞, which in turn is equivalent to saying the random walk hits A or −B at some finite time, since otherwise ST  is not defined. In fact, P(T = ∞|S0  = 0) = 0. What does this mean? Since the RW has step size 1, avoiding both A and −B means the RW is somehow constrained in the set {−B + 1, ..., A − 1}. This seems strange, because just when the walk hits −B + 1 or A − 1, the next coin toss somehow magically becomes 1 and −1 respectively to avoid −B and A. This seems

absurd. We will see a simple method to prove that P(T = ∞|S0  = 0) = 0.

Theorem 1.1. P(T = ∞|S0  = 0) = 0.

Proof.  Let g(k) = P(T = ∞|S0   = k) for −B  ≤ k  ≤ A. We consider the following rst step decomposition:

g(k) = P(T = ∞, X1  = 1|S0  = k) + P(T = ∞, X1  = −1|S0  = k)

= P(T = ∞|X1  = 1, S0  = k)P(X1  = 1|S0  = k) + P(T = ∞|X1  = −1, S0  = k)P(X1  = −1|S0  = k)

= P(T = ∞|S1  = k + 1) ×  + P(T = ∞|S1  = k 1) × 

 (g(k + 1) + g(k − 1))

Note that g(A)  =  0, g(−B)  =  0.  Let g =  maxk g(k) and let k be a value of k for which g(k) = g . Then as g(k) is an average of g(k+ 1) and g(k− 1), both of these two must be equal to g as well.  By induction, it follows that for all −B  ≤ k  ≤ A, g(k)  =  g , but since g(−B) = g(A) = 0, we must have g = 0 implying all g(k) = 0 for −B ≤ k ≤ A. In particular,

g(0) = 0, which is what we wanted to prove.

Now, we derive an expression for f (k).

k + B

Theorem 1.2. For −B ≤ k ≤ A, f (k) =

Proof.  We again use the first step decomposition.

f (k) = P(ST  = A|S0  = k)

(P(ST  = A|S0  = k + 1) + P(ST  = A|S0  = k 1))

= (f (k + 1) + f (k − 1))

So we see that f (·) satisfies the same recursion as g(·) with the exception that f (A) = 1, f (B) = 0 (why?). So the "maximum" argument won’t work any more, and this needs to be solved directly. We get from the above relation that f (k + 1) − f (k)  =  f (k) − f (k − 1) for each k .  So the consecutive differences are equal; let d be the value of this common difference. Then

f (A) f (B) =   (f (k + 1) f (k)) = (A + B)d

k=B


and using the fact that f (A) = 1, f (B) = 0 we get d =  . Thus,

f (k) = f (k) f (B) =   (f (l + 1) f (l)) = (k + B)d =  .

 

This immediately answers the first question.

•  (Answer 1) Plugging A = 200, B = 100, k = 0, we get f (0) = (0 + 100)/(200 + 100) = 1/3.

Interpretation:  Suppose Alice and Bob are betting on the outcomes of fair coin tosses.  If the outcome is heads, Alice wins $1 from Bob, whereas if the outcome is tails, Bob wins $1 from Alice. The game continues until either Alice or Bob is ruined. If Alice and Bob start with $A and $B respectively, we want to nd the probability that Alice ruins Bob i.e. Alice wins everything. Let us define a random walk representing Alice’s earnings. Clearly the walk starts from S0  = A. We are interested in the hitting time T  = TA+B,0  representing the rst time Alice ruins Bob or Alice loses everything. We seek to nd P(ST  = A + B|S0  = A) which, according to the formula above, equals

A + 0               A    

(A + B) + 0      A + B

Finally, let us look at the other questions involving the expected number of games the gambler has to play.  In other words, we are interested in h(k)  = E(T |S0   =  k) where T  = TA, B  and −B ≤ k ≤ A. By now it is evident that we need to develop some kind of recursion using first step decomposition to solve for h(k).

Theorem 1.3. h(k) = (A − k)(k + B) for −B ≤ k ≤ A.


Proof.  See homework.

This enables us to answer the second 

question.

•  (Answer 2) A = 200, B = 100, k = 0, then h(0) = 200 × 100 = 20000.

Now we turn to the third question. Define the hitting time τr  = min{n ≥ 0 : Sn  = r}, the rst time the random walk hits integer r .

•  (Question 3) B = 100. Want P(τ100  < ∞|S0  = 0) and E(τ100 |S0  = 0).

This hitting time looks very similar to the hitting time we have been talking about, but we are missing the upper boundary (which is ∞) so we create a sequence of (our original) hitting times with nite upper boundaries so that we can directly apply the results developed thus far.

Consider the hitting times Tm, B  where m  ∈ N, then note that Tm, B   = min(τm , τB) and hence Tm, B  ≤ τB . Since E(Tm, B |S0  = 0) = mB → ∞ as m → ∞, we conclude that

E(τB) ≥  lim  E(Tm, B) → ∞

so that E(τB) = ∞ . So the gambler has to wait for an infinite amount of time (on average) to hit any −B (in question 3, B = 100).

Finally, recall that P(STm, B    = m|S0   = 0) = B/(m + B) → 0 as m → ∞ which implies P(STm, B   = −B|S0  = 0) = m/(m + B) → 1 as m → ∞ . Now, for any m,

P(τB  < ∞|S0  = 0) P(STm, B   = B|S0  = 0)

implying, taking limit as m → ∞ , P(τB  < ∞|S0  = 0) = 1.