Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ELEC4631 midterm 21


Problem 1 (30 marks in total)

This problem must be done by hand without the aid of a computational device like a calculator or computer software like MATLAB

(a)  (10 marks) Determine whether the 3 x 3 matrix

  

'                 '

can be diagonalised or not.

(b)  (20 marks) Consider the quadratic form f : R3  → R given by

f (x) = 2x1(2) - 8x1 x2 + 2x2(2) + 6x2 x3 + 2x3(2) ,

where x  =  (x1 , x2 , x3 )T .   Determine an orthogonal matrix V  and real constants d1 , d2 , d3  such that f (Vz) = d1 z 1(2) + d2 z2(2) + d3 z3(2), where z = (z1 , z2 , z3 )T .

 

Problem 2 (40 marks in total)

(a)  (15 marks) Consider a system described by the ODE:

x˙   =   -x - 3y5

y˙   =   2x3 - y .

Using the candidate Lyapunov function

V (x, y) = x4 + y6 ,

show that the origin is globally asymptotically stable.

(b)  Consider a control system described by the nonlinear controlled ODE:

x˙   =   -y(x - y) + u

y˙   =   -y(sin x + x - y) + u,

where u = η(x, y) is a scalar state-feedback control signal.  Answer the following questions:

(i)  (20 marks) Using the candidate Lyapunov function      V (x, y) = 1 - cos x +  (x - y)2 ,

show that you can design u such that it renders the origin asymptotically stable and V˙ (x) = -κ sin2 x for some constant κ > 0.


(ii)  (5 marks) Using the same candidate Lyapunov function as in (i), is it possible to establish that the same control law u renders the origin globally asymptotically stable? Explain your answer.

Problem 3 (30 marks in total)

An autonomous linear time-invariant system (with no driving input) is described by the differential equation

y¨ + 3y˙ + 2y = 0,

with initial conditions y(0) = 1 and y˙(0) = -2. Using the observer canonical state- space representation for the system (with zero input), solve the state-space equation to find the solution of the differential equation satisfying the given initial conditions for all t 2 0.