Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Mathematics 1

Sample Final Examination

2021

1. Consider the function f : (0, o) _- R where f (x) = x + 25x-3 .                 The diagram below shows a right angled triangle OBP in the plane where

· O is the origin,

· B = (t, 0) for some positive real number t,

· P is a point on the curve y = f (x).

y = f (x)

P

h

x

(a) Write down the height h of the triangle in terms of t.

s0la芒i0n:      h = t + 25t-3 .

(b) The area A of the triangle is αt2 + βt-2 where α and β are real numbers. Find the values of α and β .

s0la芒i0n:

A = lOBl × lBP l

= t(t + 25t-3 )

= t2 + t-2

← α =

β =

(c) Find the value of t that minimizes A.         Use the First Derivative Test to justify your answer.

s0la芒i0n:     From (b)

A = t2 + t-2 .

Then

dA = t _ 25t-3  = t4 _ 25

Since t > 0

dA

= 0

dt

t4 _ 25

3

年÷  t4 _ 25 = 0

÷ t4  = 25

÷ t = ,5

Thus, we only check the sign of for t e (0, ,5) and for t > ,5.

If t = 1, then = _24 < 0, and when t = 3, = > 0.

So by the First Derivative Test, t = ,5 is the t value that minimizes A.

2.  (a) Find the most general antiderivative of

4e + 3x _ + e-3x +,1 _ 2x.

s0la芒i0n:

The most general antiderivative is

4ex + x2 + 2 ln l4 _ xl _ e-3x _ + C.

(b) Find 1 o dx.

s0la芒i0n:

1 o dx   =   bl 1 b dx

=   bl 1 b 3x-3 dx

=   bl _ x-2 1(b)

=   bl _ 、、

=   bl +

=   _1.5 lim 1 + 3

=   0 +

3

=

2

3. A particle, initially located at the origin, is moving along the x_axis with a velocity (measured in cm/s) given by

v(t) = _ sin(πt),

where t 2 0.

(a) Find the position of the particle as a function of time (i.e. find x(t)).

s0la芒i0n:

x(t) = _ sin(πt)dt

t      1

π     π 2

Since x(0) = 0,

0 = 0 + cos(0) + c

1

÷ c = _

π 2

Therefore, the position of the particle is given by

x(t) = + cos(πt) _ cm.

(b) Find the acceleration of the particle as a function of time (i.e. find a(t)).

s0la芒i0n:    Since

a(t) = v/ (t)

The acceleration of the particle is given by

a(t) = _ cos(πt)   cm/s2 .

4. Find the average value of f (x) = 4x3 over the interval [ 1, 3 ] .

s0la芒i0n:     We have a = 1, b = 3 and f (x) = 4x3 . Thus

fave  = 1 3 4x3 dx

= ┌x4 1(3)

= 34 _ 14

= 40 .

5. Suppose that two events A and B satisfy

Pr(A) = 0.65,   Pr(B) = 0.25  and  Pr(A n B) = 0.1 .

(a) Construct a table of intersecting probabilities and use it to calculate Pr(A/ n B/ ).

s0la芒i0n:

The table of intersecting probabilities is:

n

A A/

B

/

0.15

0.2

0.25

0.75

0.65 0.35

1

From this we can see that Pr(A/ n B/ ) = 0.2.

(b) Are A/ and B/ mutually exclusive?

s0la芒i0n:     No, we have just seen that Pr(A/ n B/ ) = 0.2 0.


(c) Find Pr(A/ u B) .

s0la芒i0n:      Using the table of intersections that we have just constructed together with the Addition Rule, we have

Pr(A/ u B)   =   Pr(A/ ) + Pr(B) _ Pr(A/ n B)

=   0.35 + 0.25 _ 0.15


=   0.45.

6. Consider the two functions

f : _- given by f (x) = x2 + x _ 7,    and

g : 佟 _- 佟 given by g(x) = 17 _ x _ x2 .

These functions have the following graphs:

y

(a) Find the x values at the points where the graphs intersect (i.e. points A and B).

s0la芒i0n:     The graphs intersect where f (x) = g(x), hence

x2 + x _ 7 = 17 _ x _ x2

年÷  x2 + x _ 12 = 0

÷ (x + 4)(x _ 3) = 0

年÷  x = _4 or x = 3

So x = _4 at A, and x = 3 at B .

(b) Calculate the area of the shaded region in the graph.

s0la芒i0n:     The area is given by:

-4(3) g(x) _ f (x) dx = -4(3) _2x2 _ 2x + 24 dx

= _ _ x2 + 24x3-4

= _ _ 32 + 24(3)_ _ _ (_4)2 + 24(_4)

343

=   3

7. Find

4e2x _ 2ex + 3

x-o 3e2x + 5ex + 2

s0la芒i0n:

4e2x _ 2ex + 3 4 _ 2e-x + 3e-2x

x-o 3e2x + 5ex + 2     x-o 3 + 5e-x + 2e-2x

lim  4 _  lim  2e-x +  lim  3e-2x

x-o x-o x-o

lim  3 +  lim  5e-x +  lim  2e-2x

x-o           x-o                    x-o

4 _ 0 + 0 4

=                                                         =

3 + 0 + 0      3 .

8. New cars from a factory are tested to see what their stopping distance is, going from a common reference speed to a complete stop. The following is a random sample of the stopping distance (measured in metres) of cars from the factory:

23.3,  20.1,   18.7,  28.9,  22.2,  22.3,  25.8,  31.1,   17.6,  20.0.

(a) Find the mean stopping distance of cars from this factory.

s0la芒i0n:

= xi

=       (23.3 + 20.1 + 18.7 + 28.9 + 22.2 + 22.3 + 25.8 + 31.1 + 17.6 + 20.0)

The mean stopping distance is 23 metres.

(b) Find the median stopping distance of cars from this factory.

s0la芒i0n:    We first order the numbers from smallest to largest:

17.6,   18.7,  20.0,  20.1,  22.2,  22.3,  23.3,  25.8,  28.9,  31.1

Since we have 10 numbers, the median is the average of the 5th and 6th entries. Therefore, the median is 22.25 m.

9. A study at a particular university finds that 10% of the students do not study Math- ematics in their first year. The study also finds that 28% of the students that study Mathematics also study Chemistry in the first year.  Of those students that don’t study Mathematics, only 12% study Chemistry in the same year.

(a) Draw a tree diagram which shows the information provided in this question.

s0la芒i0n:     Let M be the event that the “student studies Mathematics ”and C be the event “student studies Chemistry”. An appropriate tree diagram is:

0.28

C

M

0.72

C

0.12

C

M

0.88

C

(b) Given that a student has signed up for the first year Chemistry at this university, what is the probability that the student will also study Mathematics during the first year?

s0la芒i0n:

Pr(M l C)   =

=

=

Pr(M n C)

Pr(C)

×

× + ×

252

264

21

=

22 .

The probability that the student will study Mathematics during the rst year given

that this student has signed up for the first year Chemistry is .

10. Every day, Bob travels to and from Trinity College on the tram. A daily ticket costs 4 dollars. Bob thinks this is too much, so he decides to travel without a ticket until he is caught. Each day he travels without a ticket, the probability that he is caught and fined is 0.05. The fine is 240 dollars.

(a) Find the probability that Bob will avoid at least 240 dollars worth of fares before he is caught. Write your answer to 4 decimal places.

s0la芒i0n:

Let X be the number of days Bob travels without a ticket before he is caught. Then X ~ Geom(0.05).

Since 240 = 4 × 60, Bob will need to travel at least 60 days to avoid 240 dollars worth of fares.

Therefore we calculate

Pr(X 2 60) = (1 _ p)60  = 0.0461   (4 d.p.)

Thus, the probability that Bob will avoid at least 240 dollars worth of fares before he

is caught is 0.0461 (to 4 d.p.).

(b) Find the greatest value of x so that the probability Bob travels for at least x days before being caught is more than 0.5.

s0la芒i0n:    We need the greatest value of x such that Pr(X 2 x) > 0.5 .

Pr(X 2 x) > 0.5

(1 _ p)x  > 0.5

(0.95)x  > 0.5

ln(0.95x ) > ln(0.5)

x ln(0.95) > ln(0.5)

x <

So the greatest such value of x is 13

11. Wally is preparing for an important visit by 5 French business clients whom he has never met.  He considers purchasing a large jar of Vegemite as a welcome gift for each visitor, but learns that only 60% of all French people like Vegemite. In order to save money, he buys only three jars.

(a) What is the probability that exactly 3 of the French visitors like Vegemite?

s0la芒i0n:

Let X be the number of French visitors that like Vegemite.

Then X is binomial with n = 5 and p = 0.6.

Now

Pr(X = 3)   =    C (0.6)3 (1 _ 0.6)2

=   10(0.6)3 (0.4)2

=   0.3456

The probability that exactly 3 of the French visitors like Vegemite is 0.3456.

(b) What is the expected number of French visitors who like Vegemite? s0la芒i0n:     Since X ~ Bin(5, 0.6) we have

E(X) = np = 5 × 0.6 = 3.

The expected number of French visitors who like Vegemite is 3.

(c) What is the probability that at most 3 of the French visitors like Vegemite?

s0la芒i0n:             Pr(X < 3) = 1 _ Pr(X 2 4)

=   1 _ Pr(X = 4) _ Pr(X = 5)

=   1 _  C; (0.6)4 (0.4) _  Cì (0.6)5 (0.4)0

=   1 _ 0.2592 _ 0.07776

=   0.66304

The probability that at most 3 of the French visitors like Vegemite is 0.66304.

12. Consider the continuous random variable X with probability density function

,!!! 0             x <

f (x) = ! 2 sin(x) < x <

!

!!0             x >

(a) Show that      f (x)dx = 1.

-o

s0la芒i0n: -o(o) f (x)dx   = - 0 dx + # 2 sin(x)dx + #o 0 dx

#

=   0 + _ 2 cos(x)#(2)   + 0

3

=   0 _ (_2 × )

=   1