Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MAT00028M

MMath and MSc Examinations 2020/21

Stochastic Calculus and Black-Scholes Theory

1 (of 3).     Let (Ω , F, P) be a probability space, let (Ft )t0  be a ﬁltration on this space and let W be a Brownian Motion with respect to (Ft )t0 .

(a)   Show whether ξ , η deﬁned by

,5,               if t e [0, 5)                       ,3,     if t e [0, 5)

．

ξ(t)  = ,    η(t)  = 2(2) 0,                if t 2 15                            0,         if t 2 11

are random step processes. Give reasons for your answer. If any of these processes is indeed a random step process, then calculate the mean and

variance of its stochastic integral I(．).                                                  

(b)   Let n e N. Deﬁne a process X by setting

Xt  = exp  Wtn + !0 t  n (n2 1) Ws(n) -2 W n-1) ds 1, t 2 0.

Prove that X can be written as a stochastic Itˆo integral and determine its integrand.                                                                                         

(c)   Deﬁne the space Mlo(2)c (0, o) and determine if the processes A and B deﬁned by

At  = cos(Wt ) and Bt  = exp Wt4 , t 2 0

are in Mlo(2)c (0, o). Carefully justify your answer.                                 

2 (of 3).     Let (Ω , F, P) be a probability space, let (Ft )t0  be a ﬁltration on this space and let W be a Brownian Motion with respect to (Ft )t0 .

(a)   Deﬁne a stochastic process X by setting

Xt  = sin (Wt ) + !0 t sin (Ws ) ds.

Find the quadratic variation of the process X.  Carefully justify your answer. In particular, ensure that your deﬁnition of the quadratic vari- ation applies.                                                                                       

(b)   Suppose f  :  R  - R is a continuously diﬀerentiable strictly positive function. Consider the the stochastic diﬀerential equation

dXt  = f (Xt ) f> (Xt ) dt + f (Xt ) dWt ,     X0  = 0.

Solve the stochastic diﬀerential equation. Carefully justify your answer. Hint: You may wish to consider the function

g (x) = !0 x dy.



3 (of 3).     Suppose that σ > 0, r > 0, T > 0 and µ e R are ﬁxed.  Let (Ω , F, P) be a probability space and let W be a Brownian motion deﬁned on this space. Consider the Black-Scholes model, i.e.  a market consisting of a stock and a bond with prices given by stochastic processes S and B respectively. Assume that S and B are solutions to the following (stochastic) diﬀerential equations:

dSt  = µSt dt + σSt dWt , S0  > 0, t 2 0,

dBt  = rBt dt, t 2 0.

For this question you may use the Black-Scholes formula without proof pro- vided you state it clearly.

(a)   Does there exist a measure Q absolutely continuous with respect to P such that the stock price S in the Black-Scholes model is a Brownian motion on the probability space (Ω , F, Q)? Carefully justify your answer.



(b)   Suppose that C (t, S, r, σ) denotes the price at time t e [0, T] of a Euro- pean call with strike K and exercise time T in the Black-Scholes model. Calculate the functions and . Carefully justify your answer.     

(c)   Suppose a trader sells at time 0 a European call option with strike K > 0 and exercise time T at implied volatility σ 1 , i.e. the price is the Black- Scholes value C (0, S0 ) computed with σ = σ 1 . The trader then sets up a self-ﬁnancing replication strategy based on his assumption that σ = σ 1 with initial investment X0  = C (0, S0 ) and ϕt  = (t, St ) . Suppose that

the actual price process for the stock price St  satisﬁes the equation dSt  = µSt dt + σ2 St dWt .

Show that the trader will make a proﬁt (with probability one) as long

as σ 1  > σ2 . Carefully justify your answer.