Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH2230/1 Discrete Mathematics 2018/19

1.  Note: the answers to this question should not be evaluated numerically. They should be left in terms of factorials and/or binomial coefficients.

(a) You roll a fair 8-sided die, with faces numbered from 1 to 8, 40 times. Find the

probability of getting a multiple of 3 exactly 5 times.

(b)  Find in how many ways you can distribute 6 red pens, 3 blue pens, and 10 black

pens to 19 people, so that each one gets one pen.

(c)  State the Inclusion-Exclusion Principle for finite sets A1 , . . . , An  (with n < 2). Use it to deduce the generalised sum rule.

(d)  Find in how many ways you can distribute 8 different gifts to 3 people so that everyone gets at least two gifts.

 

 

2.   (a)  Find the solution of the difference equation

yn+2 _ 4yn+1 + 3yn  = 2 . 3n

with initial conditions y0  = 2, y1  = 5.

(b) Consider the following difference equation of Riccati type

yn+1yn  _ yn+1 + 3yn  = _1 .

(i)  Find the general solution.

(ii)  Find the solution with initial condition y0  = _3.

(c)  Suppose you want to type sequences of vowels (that is, the letters a , e , i , o and u).  However, the e key on your keyboard is defective and every time you press it, it outputs ee instead of just e .

Let yn  the number of sequences of length n you can type in this way.

(i)  Find y0 , y1 , y2 .

(ii) Write a second-order difference equation for the value of yn . (iii)  Solve the difference equation.

 

 

 

3.   (a)   (i)  State the Handshaking Lemma.

(ii)  In each of the following cases, either draw a picture of the graph which

matches the information, or explain why no such graph exists. ·  G1  with 4 vertices, each of degree 2;

·  G2  with 5 vertices, each of degree 3;

·  G3  with 6 vertices, of which 2 of degree 1, 4 of degree 2;

·  G4  with 5 vertices, of which 1 of degree 1, 2 of degree 2, 2 of degree

4.

(b)  Let G = (V, E) be the graph with n vertices and m edges.

(i)  Define the incidence matrix B = (b ,j )1> >n,1>j >  of G .        (ii)  Define the oriented incidence matrix C = (c ,j )1> >n,1>j > .  (iii)  Recalling that the (i,j)-entry of the matrix CCT  is given by

(  c , cj, ,

1>仅>巾

explain what the entries of CCT  correspond to in the graph G .

(iv) Calculate the number of spanning trees of the graph with the following


 

adjacency matrix:

 1(0)

1

0

1

0

0

0

1

0

1

0

1

0

1

0

1

0(1)

0 _(_) .

1 _

 


(c)  Determine whether the graphs G1 , G2  with the following adjacency matrices are isomorphic:

 


 

 1(0)   1

A1  =   0   1

0   0

0

1

0

1

0

0

0

1

1

0

1

0

0(0)   0(1)                1(0)   0

0

 

 

1

0

0

0

0

1

1

1

1

0

0

0

0

1

0

1

0

0

0

1(0)

_

1 _

0 _(_) .

0 _

 


 

 

4.   (a)  Use the connectedness algorithm to determine the number of connected com- ponents of the graph with the following adjacency matrix.


0(0)

0

 0

 0

 1

 1

0

0

0

0

1

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0(0)_

0 _(_)

_

_

1 _ .

_

0 _

_

0 _

_

0 _

0

 



(b)  Use Kruskal’s algorithm to find a minimal spanning tree for the weighted graph

shown below, and state the value of the minimum total weight.

a

 

d

 

(c)  Let G = (V, E) be a finite non-empty connected planar graph with n vertices and m edges.

(i)  State without proof Euler’s formula for G drawn in the plane with set of faces F .

(ii)  Prove that if all cycles of G  have at least 4 edges, then  n  < 3 implies

m ● 2n _ 4.

(iii)  Deduce that K3 ,3  is not planar.

(d)  Prove that every finite tree is a planar graph.