Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Pure Mathematics

Solutions and comments

2021

1. Let (xn )neN  be a convergent sequence of real numbers with xn

Prove that the series

n1+xn

n=1

----- L, where L > 0.

n→+o

converges.

[10 marks]

Solution: Since xn  - L > 0, there exists a positive integer N , such that, for all indices n with n > N ,

xn  > .

For all such n we then have

1 < 1

The series     n n午(1)y2 converges because 1+L/2 > 1 (p-test). Therefore the series     n n午(1){n

converges (Comparison Test).


2.

(a) Let a, b e Z, a < b. Let f : [a, b] - Z be continuous in [a, b] and twice differentiable in

(a, b). Let A and B be the points with coordinates (a, f (a)) and (b, f (b)) respectively.

If the line segment with endpoints A and B intersects the graph of f at a point P with P A, B (see figure 1), prove that there exists a real number c in the interval

(a, b) such that foo (c) = 0. [10 marks]

Figure 1: Plot for Question 2a.

(b) Let a = -4, b = 1 and f (x) = . The points A(-4, ) and B(1, 1) are on the graph

of f and the line segment with endpoints A and B intersects the graph at a third point P (see figure 2). However, there is no point c in the interval (-4, 1) such that foo (c) = 0.  (You are not asked to prove that AB intersects the graph, nor that foo doesn’t vanish).

Explain why this doesn’t violate the result of part (a). [5 marks]


Figure 2: Plot for Question 2b.

Solution:

(a) Let (x0 , f (x0 )) with a < x0 < b be the coordinates of P . Applying the Mean Value

Theorem (MVT) to f in each of the intervals [a, x0] and [x0 , b] we see that there

exist c1 e (a, x0 ) and c2 e (x0 , b) such that fo (c1 ) and fo (c2 ) are equal to the slope

of the line segment AB . In particular, fo (c1 ) = fo (c2 ). The function fo satisfies the

hypotheses of the MVT (alternatively, Rolle’s thm) in [c1 , c2]. Indeed, it is continuous

in [c1 , c2] because it is differentiable all over (a, b), and differentiable in (c1 , c2 ). It

follows that there exists c e (c1 , c2 ) such that foo (c) = 0.

(b) We cant apply part (a) to the interval [-4, 1] because f is not defined at 0, and we

can’t apply it to [-4, 0) u (0, 1] either because it is not an interval.

3.

(a) Prove, by verifying the ε-δ property (Ross 17.2), that f (x) = is continuous

[10 marks]