Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

2019

Pure Mathematics

PART A

Answer all six questions in this part.

They are worth 40 marks in total.


A1. For each of the following statements, state whether it is TRUE or FALSE. Give a brief proof or a counterexample.

(a) If A is a non-empty subset of 皿 and 1 ≤ a ≤ 2 for all a e A, then 1 ≤ infA ≤ supA ≤ 2.

[3 marks]

(b) If A is a non-empty bounded subset of 皿, and B is defined by B = {a4 : a e A}, then

supB = (supA)4 . [3 marks]

Solution:

True.

Proof: 1 is a lower bound of A and infA is the largest lower bound, therefore 1 ≤ infA. Similarly, 2 is an upper bound and supA is the smallest upper bound, therefore supA ≤ 2. Finally, infA ≤ supA is true for all non-empty bounded sets. Putting it all together we have 1 ≤ infA ≤ supA ≤ 2.

False.

Counterexample:  Let A = {一1, 0}.   Then B = {0, 1}, supA = 0, supB = 1 (supA)4 .

A2. Prove, by verifying the ε -δ property of Ross, Theorem 17.2, that the function f : 皿 → 皿 given by f (x) = 2x3 +x +7 is continuous at the point x0 = 2.

[7 marks]

Solution Let ε > 0. Pick a positive number δ such that δ < 1 and δ < , for example δ = min ,1, . For all x e with lx 2l < δ we have lx 2l < 1, therefore 1 < x < 3, therefore

l2x2 +4x +9l = 22x +4x +9 ≤ 39,

therefore

lf (x) f (2)l = l(2x3 +x +7) 一 25l = l2x3 +x 一 18l = l2x2 +4x +9llx 一 2l ≤ 39δ < ε .

A3. Use Taylor’s Theorem to prove that if x e [0, 1] then

x + ≤ log(x + 1) ≤ x + .

[Recall that we write log for the logarithm to the base e, loge. ] [7 marks]

Solution: If x = 0 then we have 0 ≤ 0 ≤ 0, so going forward we assume x > 0. The derivatives of log(x + 1) can be calculated as

log(n)(x + 1) = (1)n+1(n 1)!

The Taylor series about zero is then

( k+1xk

(this is in the book and can be used without proof). Let Rn(x) be the nth remainder then by subtracting log(1 + x) across the inequality, and multiplying by 一1, we are asked to prove if x e (0, 1] then R4(x) ≤ 0 ≤ R5(x). By Taylor’s theorem there exists y1 ,y2e (0,x) such that

R4(x) = !(x4   and R5(x) = !(x5 .

Since x,y1 ,y2 > 0 we see R4(x) < 0 and R5(x) > 0 so that the inequalities hold.

A4. Give an example of each of the following. You do not need to explain why your example is correct.

(a) a group of order 12 that is abelian but not cyclic

[1 mark]

(b) a nonabelian group of order 2018 that contains an element of order 1009

[1 mark]

(c) a group of order less than 10 that acts transitively on {1, 2, 3, 4, 5}

[1 mark]

(d) a nontrivial proper subgroup of 25

[1 mark]

(e) a nonconstant homomorphism from 4 to 2

[1 mark]

(f) a group with exactly one conjugacy class

[1 mark]

(g) a subgroup of D3 that is not normal

[1 mark]

Solution:

(a) up to isomorphism, the only possibility is 2 × 6

(b) the dihedral group D1009

(c) up to isomorphism, the only possibility is 5

(d) the only possibility is the cyclic subgroup5 25

(e) there is only one; it sends any generator to 1 e 2

(f) the trivial group {e} is the only possibility

(g) the only possibilities are the subgroups generated by a single reflection

A5. Suppose that G is a finite group, and that A,BG are subgroups. Let H := A n B be the intersection of A and B.

(a) Prove that H is a subgroup of G.

(b) Prove that if lAl and lBl are coprime, then H is trivial.

Solution:

[3 marks] [3 marks]


(a) We apply the subgroup test.

Firstly, H is nonempty: A and B are subgroups of G, so e e A and e e B. Therefore e e A n B = H.

Secondly, H is closed under products: if g, h e H, then g, h e A and g, h e B. There- fore gh e A and gh e B since A and B are subgroups. Therefore gh e A n B = H.

Finally, H is closed under inversion: if g e H, then g e A and g e B, so g1 e A and g1 e B since A and B are subgroups. Therefore g1 e A n B = H.

(b) By Lagrange’s theorem, lHl divides both lAl and lBl. Since lAl and lBl are coprime, we must have lHl = 1, so H is trivial.

A6. In the following question, you may use any theorems from the course but you must clearly state which theorems you are using.

(a) Show that a group G of order 35 cannot act transitively on a set X of order 9.

[4 marks]

(b) Is 勿9 × 勿8 72? Justify your answer. [3 marks]

Solution:

(a) If G acts transitively on X then X is an (the only) orbit of the action. By the orbit- stabilizer theorem, lXl = 9 divides lGl = 35. This is impossible, so no such action can exist.

(b) a × 勿b is cyclic if and only if gcd(a, b) = 1.  Since 9 and 8 are relatively prime,

9 × 勿8 is cylic. We have l勿9× 勿8l = 9 × 8 = 72 = l勿72l. Two cylic groups of the same order are isomorphic, so 9 × 勿8 72 .



PART B

There are four questions in this part, each worth 20 marks.

The best three answers will count.

B1.    (a) Prove from the ε -N definition of convergence (without using any Limit Theorems)

that the sequence (an)neN given by an = converges to 2. [6 marks]

(b) Find the limit of the sequence (bn)neN given by

bn = 3n2 ╱ 1 1 \ .

(You may use any Limit Theorems you find useful provided that you make clear what it is you are using). [7 marks]

(c) Let (an)neN be a sequence of real numbers such that 0 < an < 1 for all n.

(i) Prove that, if the series  y(ǎ) an converges, then the series  y(ǎ) 1aa(n)n converges as

well.

(ii) Is the converse true? Give a proof or a counterexample.

Solution:

(a) Let ε > 0. Let N be a positive integer such that N > 10/ε. For all nN we have

| 2 | = < < ε .