Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Coursework - Operational Research and Mathematical Computing 2022

Coursework

This coursework is linked to the Simplex Method. In theory the worst case complexity of the Simplex   Method is O(n!). That is, the computational cost grows factorially with the number of decision           variables. However, in practical cases the complexity is often much less. Here we will study how much less.

You will

1. code, in Python, alternative pivoting rules for the Simplex Method;

2. run the different rules on multiple different linear programs with different numbers of decision variables, outputting the run‑time data as an Excel spreadsheet;

3. within Excel, compute the average and worst case run‑time as a function of the instance size;

4. within Excel, produce plots showing (quantitatively) the complexity;

5. within LaTeX, write a report analysing the pivoting rules, including your analysis using tables and plots.

Algorithms

The Simplex Method performs pivoting operations swapping an index between the basic set B and its complement N. The pivoting rule chooses a (row, column) pair (r, s). Given that pivot entry, row         operations are performed so that the tableau entry rs → 1, and all other entries in that column,         is, i ≠ r → 0.

In the theory part of the course the pivoting rule shown was Bland's rule, also called the smallest     subscript rule. This first chooses s to be the smallest (column) index with negative reduced costs     s < 0. The rule next chooses r to be the smallest (row) index that satisfies the minimum ratio test.

Largest change rule

In the largest change rule, we look at every column j with negative reduced costs j < 0. Within each column, choose rj to be the smallest (row) index that satisfies the minimum ratio test (as in Bland's      rule). Then choose s to be the smallest (column) index such that the change in the objective function   value |jrj/rj,j| is maximised.

Python

On  repl.it  you will find code implementing the (one phase) Simplex Method and Bland's rule.

The function  simplex  takes as input the tableau (in basic form), the initial basis (as a list of integer indexes), and a function that implements the pivoting rule. It returns the solution as a dictionary        containing its status (did it succeed), the optimal solution, and the final basis.

The function  find_pivot_bland  implements Bland's rule. It takes as input the tableau, and returns the  (r,  s)  pair giving the row and column indexes on which to pivot.

Task 1

At the top of the file there is an integer variable

student_id  =  12345678


You must replace this number with your own eight digit ID. This is used to generate the problems the Simplex Method will solve.

Task 2

Using  find_pivot_bland  as a template, you should implement  find_pivot_largest_change . A stub is given. The function should implement the largest change rule given above.

There are tests on  repl.it  that perform very basic checks of the code꞉ they do not guarantee complete correctness.

Task 3

It is essential that you complete task 1 before doing this step.

At the top of the script there is a boolean variable set, as

run_timings  =  False

Once you are happy with your code, change this to

run_timings  =  True

Run your code using the Run button (not the Run  tests button). This should take around one minute (on repl.it꞉ times will vary on other machines). At the end it will have produced an Excel                  spreadsheet timings.xlsx.

Note꞉ if you cannot complete task 2, or want to continue on with the analysis before completing it, at the top of the script there is a boolean variable

only_time_Bland  =  False

By setting this to

only_time_Bland  =  True

a spreadsheet creating the timing data just for Bland's rule will be produced.

Excel

The timing data in the Excel spreadsheet was created by looping over a range of problem sizes         (quantified by the number of decision variables  n ; the number of constraints was set to  n+5 ). For  each problem size, 50 instances were created. For each instance the simplex method was run using both Bland's rule and the largest change rule.

The spreadsheet contains two sheets associated with the two pivoting rules. On each sheet, each row contains the times to solve each individual instance. The first column gives the instance size; the next  50 columns gives the times.

Task 4

Download the spreadsheet from  repl.it . Load it into Excel. Create a new sheet in the workbook;     call it Analysis . Using appropriate Excel functions, add five columns to this sheet. The first should    contain the instance sizes  n . The next four should contain the average time and worst‑case time for  each pivoting rule and instance size ( Smallest  subscript,  Average ,  Largest  change,                  Average ,  Smallest  subscript,  Worst ,  Largest  change,  Worst ). From these, create five more columns containing the logarithms (base 10) of  n  and each time respectively.

Task 5

Create two plots. One should plot the (logarithm of the) average run time for each pivoting rule as a      function of the (logarithm of the) instance size. The other should plot the (logarithm of the) worst case run time for each pivoting rule as a function of the (logarithm of the) instance size. Both plots should    be appropriately labelled and include trend lines for each pivoting rule.

Save your figures in  pdf  format.

Task 6

Using appropriate functions (e.g.,  INTERCEPT ,  SLOPE ), compute the best fit coefficients for log(t) = p0 log(n) + p1,

where t is the timing data and n is the instance sizes. There should be different coefficients for each pivoting rule and for the average and worst cases (so four pairs of coefficients in total).

LaTeX

On Overleaf there is a report template. You need to complete the report to communicate your results. Task 7

In the first section of the LaTeX document, include your Python code for the function

find_pivot_largest_change .

Task 8

In the second section of the LaTeX document, using big O notation, analyse your Python code. Task 9

In the third section of your LaTeX document, include the figures created in Excel. Add captions explaining what each is.

Also in the third section, add a table reporting the p0,1 coefficients computed in Task 6.

Task 10

In the fourth and final section of the LaTeX document, write one paragraph to explain which of the        pivoting rules is more efficient in which cases. You should use the results from the complexity analysis in task 8, and your figures and table in task 9, to back up your statements.

Submission

All work should be submitted through Blackboard.

Four "things" need submitting.

1. All the Python code used, as a  zip  file. If  repl.it  was used, go to  Files  (first item in the left vertical bar ‑ looks like the "New Document" icon in Word). Click on the three dots menu. The      third item should say  Download  as  zip . This zip file should contain all Python scripts needed.

2. The Excel spreadsheet with the completed analysis.

3. All LaTeX and figure files needed to create the report, as a  zip  file. If Overleaf was used, go to    the Menu  (top left), and from  Download  select  Source . This zip file should contain everything needed.

4. The report as a  pdf  file. If Overleaf was used, go the the Menu  (top left), and from  Download select  PDF .

Marking scheme (rough)

  [8 marks] Python code runs correctly

[2 marks] Python code documented correctly

[4 marks] Excel data analysis organised correctly

[4 marks] Excel figures created, labelled, with trend lines, correctly

  [2 marks] Intercept and slope used correctly

  [4 marks] LaTeX document compiles without errors

  [2 marks] Python code reported in document

[5 marks] Complexity analysis correct

[2 marks] Figures included correctly, with captions

  [2 marks] Table created correctly, with caption

  [5 marks] Efficiency argument reasonable, supported by evidence