Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH2301

1.   (a) Define the terms streamline, particle path and streakline.

(b) A fluid moves two-dimensionally so that its velocity u is given by u = e2t  i + e3t j,

where i and j are the unit vectors for the Cartesian coordinates (x, y) and t is time.

Obtain equations in terms of x and y alone for the following: (i) the streamline through (1,1) at time t = 0,

(ii) the particle path for a particle released from (1,1) at time t = 0,

(iii) the streakline, at time t = 0, through (1,1) formed by particles released from (1,1) at times t ≤ 0.

(c)  Sketch carefully the three loci describing the fluid motion identified in (b) on the same diagram in the (x, y) plane. Where two or more curves coincide, mark the tangents to the curves. Indicate clearly the start and end points, or extent, of each curve.

(d)  Show that in steady flow the quantity

H = p + ρ9u92 + ρG

is constant along streamlines.

You may use the momentum equation

Du

Dt

where p is the pressure. Here F is a conservative external force per unit mass with potential G defined through

F = -|G.

You may also use the result

(u.|)u = |9u92 + (| x u) x u.

 

2. An impermeable, solid cylinder of radius a lies in a two-dimensional irrotational flow field with the centre of the cylinder lying at the origin of the Cartesian coordinate system Oxy. The Cartesian components (u, v) of the velocity far from the cylinder are given by

u - Ux,    v - -Uy       as        r = -x2 + y2  - o.

The circulation about the cylinder is κ .   The streamfunction, ψ, for the motion

defined through

∂ψ                     ∂ψ

satisfies Laplace’s equation.

(a) What boundary conditions does ψ satisfy  (i) at large distances,  (ii) on the cylinder?

(b)  Solve for ψ in terms of polar coordinates (r, θ).

(c)  Obtain expressions for the polar components of velocity, ur   and uθ , on the cylinder.

(d)  Show that the stagnation points on the cylinder occur for polar angles θ satis- fying

sin(2θ) = κ/4πa U.2

(e) By considering intersections of the graph of the function f1 (θ) = sin(2θ) with the horizontal line f2 (θ)  =  κ/4πa2 U , when plotted on the same axes as a function of θ, discuss the location of the stagnation points for the cases (i) κ = 0, (ii) 0 < κ < 4πa2 U , and (iii) κ = 4πa2 U .

(f) What happens to the location of the stagnation points when κ > 4πa2 U ? By writing down the complex velocity potential obtain an equation whose roots give the location of the stagnation points.

You may use without proof the relations

1 ψ ur  =

ψ

uθ  = -

 

3. The circle theorem states that the complex velocity potential for potential flow outside the solid cylinder 9z9 = a, of radius a > 0, can, in certain circumstances, be written in the form

w(z) = f (z) + f (a2 /z).

(a)  Give sufficient conditions for the validity of the theorem, defining f and f and proving that there is no normal ow through the circle 9z9 = a.

(b) A line source of strength 2πm lies at z  =  z0   outside the cylinder and has complex potential given by m log(z - z0 ) (where a and m are real constants, and z0  is a complex constant with 9z0 9 > a and imaginary part, wz0 , positive). The circulation about the cylinder 9z9 = a is zero.

(i) Use the circle theorem to obtain the complex potential for this system in

the form

2

z

(ii) Rearrange this expression and so describe the image system inside the cylinder in terms of simple singular flows.

(iii) A second line source of the same strength is introduced at z = z0 . Write down the complex potential, in terms of simple singular flows, for this new flow consisting of two vortices external to the cylinder.

(iv)  Consider the curve C shown below.  C coincides with the real-z axis for 9z9 > a and, in 9z9 ≤ a, C coincides with the semi-circle 9z9 = a, wz > 0. In terms of simple singular flows, what is the image in C of a line source of strength 2πm lying at z = z0 , above C, as shown on the figure?

(v) A line source of strength 2πm lies at z = 2ia above a solid flat surface with a solid semi-circular bump, as given by curve C below. What is the velocity on the real-z axis, i.e. wz = 0, oz > a?

(vi) The line source at z0  is replaced by a line vortex of strength κ.  What is the image in C of the line vortex?

+ z0

C

a



4. A stream of local depth h flows along a channel of constant width.  The channel floor rises slowly from a constant height zero to reach a small constant height k . Suppose that the fluid depths upstream and downstream of the rise are h1  and h2 respectively.

(a) Explain carefully how to use Bernoulli’s equation to show that Φ(h1 ) = Φ(h2 ) + k,

where Φ(h) = h + Q2 /(2gh2 ) and Q = uh is the volume flux per unit width. Distinguish carefully between the fluid depth and the surface height where necessary.

(b)  Sketch the graph of Φ(h) for h  >  0, finding the position,  h  =  hm , of the minimum of Φ.  Define the Froude number, F , at any point in the flow and note a physical interpretation of F . Find the value of F when h = hm .  Show that the Froude number when the depth is h can be written F = (hm /h)3/2 . Find the ranges of h for subcritical and supercritical flow.

(c)  Show that in terms of the depth ratio λ = h/hm  the function Φ can be written

Φ(h) = h + hm(3)/(2h2 ) = hm [λ + 1/(2λ2 )],

and the Froude number F = λ3/2 .

(d) Further downstream the channel floor returns to zero height.  The ultimate downstream depth is h3  = hm .

(i) Using part (c), or otherwise, derive the equation 2λ3 - 5λ2 + 1 = 0,

satisfied by the depth ratio λ = h/hm .

(ii) Using the factorization, 2λ3  - 5λ2  + 1 = (2λ - 1)(λ2  - 2λ - 1), find, in terms of hm , the two possible values of the upstream depth, h1 .

(iii) Using part (c), or otherwise, find the downstream Froude number and the two possible values of the upstream Froude number.  Briefly describe the two possible flows.

 


5. A small-amplitude wave is progressing in the positive x-direction on the surface of water of constant density ρ and infinite depth, so that the equation of the surface is z = η(x, t) where z is measured vertically upwards from the undisturbed surface (z = 0). The two-dimensional linearised Euler equations governing the flow can be written

∂u         1 ∂p

=    -

t         ρ ∂x ,

∂w          1 ∂p

+       = 0,

p = pa - ρgz + ρφ,

where pa  is the constant atmospheric pressure.

(a)  Derive the governing partial differential equation satisfied by φ .

(b) By relating w to η , derive the kinematic boundary condition on φ at z = 0.

(c) By considering the pressure on the free surface, derive the dynamic boundary condition on φ at z = 0.

(d) If η(x, t) = e sin(kx - ωt), for constants e, k and ω, find φ and the dispersion relation relating ω and k .

(e)  Surface tension, of constant value σ, causes the pressure at the water surface to differ from that in the atmosphere by an amount proportional to the curvature of the surface. The fluid pressure at the surface for small waves thus becomes

2 η

p = pa - σ

(i)  Show that the phase speed, c = ω/k, of waves when surface tension is present is given by

c2  = g/k + (σ/ρ)k.

(ii)  Show that the phase speed has a unique minimum and find the correspond- ing wavelength.

(iii)  Sketch, on the same axes, the phase speed as a function of wavelength with surface tension (σ > 0), and the phase speed as a function of wavelength without surface tension (σ  = 0), marking the location of the minimum phase speed when σ > 0.

(iv) Does surface tension cause a given wave to travel faster or slower and why should this be so?

(v) Which waves are most affected by surface tension and why should this be so?