Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ECO4145 Mathematical Economics II

Assignment 3

1. Find a continuous function c : t ct, 0 ≤ t ≤ 1, to minimize(ct)0t1 0(1)ct(4) t

subject to = xt + ct, x0 = x0, x1 = 0.

The Hamiltonian is

= c4 + λ (x + c)

4

4

The state equation

eq [1] = x' [t ] x [t ] + c [t ]

x[t ] c [t ] + x [t ]

The first-order condition for minimizing the Hamiltonian is

t = / . {x x [t ] , λ λ[t ]}

4

4

foct = D[ℋt, c ] 0

偏导

c3 + λ[t ] 0

The second-order condition for minimizing the Hamiltonian is satisfied.

soct = D[foct1, c ]

偏导

3 c2

The optimal control at time t

s [0] = Solve[foct, c ]

解方程

c - λ[t ]1/3 , c (- 1)1/3 λ[t ]1/3 , c - (- 1)2/3 λ[t ]1/3

Note that the three solutions are the same. So, any one of them will do. Let us pick the first 0ne.

In[]:= s [1] = s [0]1

Out[]= c - λ[t ]1/3

The optimal control at time t

In[]:= c [t_ ] := Evaluate[c / . s [1]]

计算

In[]:= c [t ]

Out[]= - λ[t ]1/3

In[]:= c [1]

Out[]= - λ[1]1/3

The adjoint equation is

In[]:= ddx = D[ℋ , x ]

偏导

Out[]= λ

In[]:= ddxt = ddx / . {x x [t ] , c c [t ] , λ λ[t ]}

Out[]= λ[t ]

In[]:= eq [2] = λ ' [t ] - ddxt

Out[]= λ[t ] - λ[t ]

In[]:= s [2] = DSolve[{eq [1], eq [2], x [0] x0, λ[0] λ0} , {x, λ}, t ] // Flatten

求解微分方程 压平

Out[]= λ Function  {t } , -t λ0  , x Function  {t } , -

In[]:= x [1] / . s [2]

- 4 x0 λ0 + 3 λ04/3 -

Out[]= -

4 λ0

The final condition for xt

In[]:= eq [3] = (x [1] / . s [2]) 0

0

In[]:= s [3] = Solve[eq [3] , λ0] // Flatten

解方 压平

Solve :  There may be values of the parameters for which some or all solutions are not valid .

Out[]= λ 0


In[ ]:= s [3] = s [3] // FullSimplify

完全简化

64 4  x03

Out[ ]= λ 0


In[ ]:= λ0 = λ0 / . s [3]

Out[ ]=

With the value ofλ0 just found, solve the system again

In[ ]:= s [3] = DSolve[{eq [1], eq [2], x [0] x0, λ[0] λ0} , {x, λ}, t ] // Flatten

求解微分方程 压平

Out[ ]= λ Function  {t } , ,

-4+t      - 4  x04  + 16/3  x04  - 16/3     x03    4/3  + 4 -t  x03    4/3

x Function   {t } ,


The optimal control at time t is

In[ ]:= c [t ]

Out[ ]= - λ[t ]1/3

In[ ]:= c [t ] / . s [3]

4 4-t x03 1/3

Out[ ]= -

3 × - 1 + 4/3

The minimum cost is

In[ ]:= v = 01 c [t ]4 / . s [3] t

16 4     x03   4/3

Out[ ]= 27   - 1 + 4/3   3

In[ ]:= v = v // PowerExpand

幂展开

Out[ ]=


In[ ]:= ClearAll[ℋ, x, c, λ , x0, λ0, v, s, eq, foc]

清除全部

2. Find a continuous function c : t ct, 0 ≤ t ≤ 2, to

maximize(ct)0t2 0(2) 2 xt - 3 ct - c tt(2)

subject to = xt + ct, x0 = 5, x2 = 0.


4 ECO4145_Assignment 3_04_04_2022_Solution.nb



In[ ]:= = 2 x - 3 c - c2 + λ (x + c)

Out[ ]= - 3 c - c2 + 2 x + (c + x ) λ

The state equation is

In[ ]:= eq [1] = x' [t ] x [t ] + c [t ]

Out[ ]= x[t ] c [t ] + x [t ]

Maximizing the Hamiltonian

In[ ]:= t = / . {x x [t ] , λ λ[t ]}

Out[ ]= - 3 c - c2 + 2 x [t ] + (c + x [t ]) λ[t ]

The optimal control at each instant is obtained by maximizing the Hamiltonian ℋ[xt(*), c, λt, t] at that instant. The first-order condition that characterizes ct(*) is

In[ ]:= foct = D[ℋt, c ] 0

偏导

Out[ ]= - 3 - 2 c + λ[t ] 0

The second-order condition that characterizes ct(*) is satisfied.

In[ ]:= soct = D[foct1, c ]

偏导

Out[ ]= - 2

The optimal control at time t

In[ ]:= s [0] = Solve[foct, c ] // Flatten

解方程 压平

Out[ ]= c × (- 3 + λ[t ])

In[ ]:= c [t_ ] := Evaluate[c / . s [0]]

计算

In[ ]:= c [t ]

Out[ ]= × (- 3 + λ[t ])

In[ ]:= eq [1]

Out[ ]= x[t ] x [t ] + × (- 3 + λ[t ])

The adjoint equation

In[ ]:= ddx = D[ℋ , x ]

偏导

Out[ ]= 2 + λ

In[ ]:= ddxt = ddx / . {x x [t ] , c c [t ] , λ λ[t ]}

Out[ ]= 2 + λ[t ]

In[ ]:= eq [2] = λ ' [t ] - ddxt

Out[ ]= λ[t ] - 2 - λ[t ]


In[ ]:= eq [1]

Out[ ]= x[t ] x [t ] + × (- 3 + λ[t ])

Solve the system ofdifferential equations {eq[1], eq[2]}

In[ ]:= s [1] =

DSolve[{eq [1], eq [2], x [0] 5, λ[0] λ0} , {x, λ}, t ] // Flatten // FullSimplify

求解微分方程 压平 完全简化

Out[ ]= x Function  {t } , -t     1 + t × - 2 + 12 t - λ0 + t λ0 ,

λ Function  {t } , - -t     - 2 + 2 t - λ0

The final condition for xt

In[ ]:= eq [3] = (x [2] / . s [1]) 0

1 + 2 × - 2 + 12 2 - λ0 + 2 λ0

Out[ ]= 0

4 2

In[ ]:= s [2] = Solve[eq [3] , λ0] // Flatten

解方 压平

Out[ ]= λ 0 -

In[ ]:= λ0 = λ0 / . s [2]

Out[ ]= -

Use the value ofλ0, solve the system ofdifferential equations {eq[1], eq[2]} again

In[ ]:= s [3] =

DSolve[{eq [1], eq [2], x [0] 5, λ[0] λ0} , {x, λ}, t ] // Flatten // FullSimplify

求解微分方程 压平 完全简化

Out[ ]= x Function  {t } , - ,

λ Function  {t } , -

The optimal control at time t

In[ ]:= c [t ] / . s [3]

Out[ ]= × - 3 -

The optimal payoff


In[ ]:= v = 2 2 x[t ] - 3 c[t ] - c [t ]2 / . s [3] t

Out[ ]= -

In[ ]:= ClearAll[ℋ , t, ddx, ddxt, eq, s, λ , λ0, foct, c, x, v]

清除全部

3. Find a continuous function c : t ct, 0 ≤ t ≤ 2, to maximize(ct)0t2 0(2) 2 xt - 3 ct - ct(2) t

subject to = xt + ct, x0 = 5.

Note that the endpoint x2 is free, i.e., not constrained.

Let

(1)   v[ξ , τ ] = maximize(ct) τ ≤t2 2 xt - 3ct - ct(2) t

subject to = xt + ct, xτ = ξ , x2 = 0.


As defined, v[ξ , τ ] gives the value attained by the objective function, given that the system begins at time 0 ≤ τ ≤ 2 in state ξ. For τ = 2, we have v[ξ , 2] = 0 because the problem begins at the end of the time horizon and ends immediately, with the ensuing consequence that there is no payoff: v[ξ , 2] = 0 no matter what the value of ξ is, and, thus, D1 v[ξ , 2] = 0.

Let ct(*) be the optimal control at time t, 0 ≤ t ≤ 2, for the original problem and xt(*), 0 ≤ t ≤ 2, be the state of the system at time t under the optimal control ct(*), 0 ≤ t ≤ 2. Also, let λt= D1 v[xt(*), t] denote the co-state at time t along the optimal trajectory.


The Hamiltonian is

In[ ]:= = 2 x - 3 c - c2 + λ (x + c)

Out[ ]= - 3 c - c2 + 2 x + (c + x ) λ

The state equation is

In[ ]:= eq [1] = x' [t ] x [t ] + c [t ]

Out[ ]= x[t ] c&nbs