Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ACS61010 Optimal Control

Coursework

Spring 2021-22

Assignment briefing

Problem 1.  Consider the optimal landing of a rocket booster con-

sidered in Lecture 1. In Problem Set 1, we saw that, if the rocket is

oriented vertically, the model becomes

r˙ = −V

V˙ = (T + D(r,V)) + g(r)

0

where

r is the radial distance from the Earth’s centre;

❼ V is the speed;

❼ m is the rocket mass;

❼ T ∈ [0,TM ] is the thrust magnitude (control);

 D(r,V) is the drag force (a function of r and V);

❼ g(r) is the gravitational acceleration at r;

❼ g0  is the gravitational acceleration at R(Earth radius);

❼ c is a constant that depends on the engine type.

Assume that the booster’s speed is 1100 km/h when its altitude (the distance to the surface of Earth) is 5 km. The mass of an empty booster is 25,600 kg and it has 2,500 kg of fuel.

a. Show that the optimal control for the minimum-time problem is “bang-bang” . Write down the costate equations and boundary conditions.                                                           [10 marks]

b. Show that the optimal control for the minimum-fuel problem is bang-bang” . Write down the costate equations and boundary conditions.                                                           [10 marks]

c. The last two equations describing the booster dynamics imply

V˙ =    + g(r) =   [lnm(t)]  + g(r).

Assuming that D(r,V) < mg(r) (the gravity is stronger than the drag), show that the con- sumed fuel is a monotone increasing function of the final time.  (Hint: You need to integrate both sides from 0 to tf  and use V (0) = 0.) What does this observation allow us to conclude about the relation between the solutions of the minimum-time and minimum-fuel problems?

[15 marks]

d. The calculations above suggest that the optimal minimum-time control has the form

T (t) =

t ∈ [0,ts],

t ∈ [ts ,tf ].

Write a MATLAB program that solves the state equations for given ts  and tf . Use this program to find the optimal values of ts  and tf . Plot the optimal state.

When solving the state equations, assume that the drag force is given by

D(r,V) = CD ρ(r)SV2 ,

where

❼ CD  = 0.3 is the drag coefficient;

❼ ρ(r) ≡ 1.225 kg/m3  is the air density (for simplicity we take it constant); ❼ S = 10.75 m2  is the reference area.

The gravitational acceleration is given by

g(r) = g0 R 

where

g0  = 9.8 m/s2  is the acceleration on Earth;

❼ R= 6,371 km is the Earth radius.

For the selected type of thruster, TM  = 1,375.6 kN and c =  s-1 .

[15 marks]

 

Problem 2. Consider the plant

x˙1  = x1 + x2 , x˙2  = x1 + u,

and the cost

x1 (0) = 2,

x2 (0) = 2,

J(u) =  [x1 (2) 4]2 +  [x2 (2) 6]2 +  0 2   x1(2)(t) + x2(2)(t) + u2 (t)  dt.

a.  Let α  =  0 and x1 (2)  =  4.   Express the optimal control in terms of the optimal costate. Write down the corresponding two-point boundary value problem.  By solving this problem in MATLAB (use bvp4c or bvp5c), find the optimal states and costates for β = 0, 0.1, 1, 10, 100. Plot your results in four subplots each showing one state/costate component for all β .  For example, subplot(2,2,1) must show x1  for different β .

On the same axes but using dashed lines, plot the optimal states and costates for the case when α = 0 = β , x1 (2) = 4, and x2 (2) = 6. Add a legend, a title, and labels to each subplot. Explain what you observe and why.                                                                        [25 marks]

b.  Let α = 1 = β (free endpoint).  Write down the boundary value problem to find the optimal control that guarantees

(x1 (2) − 1)2 + (x2 (2) − 1)2  = 1.

Using MATLAB, find and plot the optimal states, costates, and control. What are the values

of x1 (2) and x2 (2)? Do they satisfy the terminal condition?                                  [25 marks]