Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Assignment 1

MATH3063: Nonlinear ODEs & Applications

Semester 1, 2022

The implementation of a good harvesting policy for fisheries is crucial to ensure a sustainable population of fish. If N (t) is the population of fish at some time t, a reasonable differential equation that models the change in population over time is

 = RN 1 _ - _ H(N),

where H is the harvesting function, R > 0 is the principle rate of growth, and K > 0 the carrying capacity. Note that, if no human effects were considered (H = 0) the fish are assumed to behave logistically.

Using bifurcation analysis, we can study the effect of different harvesting policies on the fish population. In lecture 4, we studied the effect of constant quota harvesting (H(N) = h) in fisheries. In this assignment we will consider a more refined harvesting function given by

H(N) =   BN  

where B > 0 and A > 0 are constants.


1.   (a)  Use a plot of the harvesting function H(N) to argue why policy based on this harvesting function may be an improvement over constant quota harvesting.

(b)   Show that the model can be non-dimensionalised to the form

dx                          bx  

dτ                        a + x .

Give an expression for x, τ, a, b in terms of the original variables N, t and constants R, K, A, B .

We want to analyse the effect of the choice of constants in the harvesting function. Hence, for the next questions, we will consider the non-dimensionalised model from Q1 part (b). Only consider biologically relevant values of x (so non-negative values) and parameter values a > 0 and b > 0.


2.   (a)   Show that the system has a fixed point at x*   = 0 for any positive value of a and b.  Use linear stability analysis to determine the stability of x*  = 0 depending on the values of a and b.

(b)  In addition to the fixed point at zero, show that there can be zero, one or two more biologically

relevant fixed points depending on the values of a and b.


3.   (a)  For each of  the fixed values a = 1/2, 1, 2, draw the bifurcation diagram with b as parameter. Identify the bifurcations and the bifurcation points b .

(b)  A bifurcation occurs whenever a = b. Determine what type of bifurcation it is.

(c)   Show that another bifurcation occurs when b =  (a + 1)2  and that it is biologically relevant when a s 1. Classify this bifurcation.


4.   (a)  There is a region in parameter space (a, b) where the model displays hysteresis. Identify this region. [Hint:  You might find it useful to  draw a stability diagram for (a, b)]

(b)  Which values of a and b must be avoided in policy making to ensure there is no catastrophic collapse

of the fish population?

(c)  Which values of a and b ensure the possibility of sustainable harvesting?