Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ELEC0019 Interference, Diffraction and Polarization of Electromagnetic Waves

Wave Propagation

Wave propagation is a central concept in physics and engineering.  It is at the heart ofmost  systems and devices in electronic engineering.  Examples include among others, long, medium and short wave radio, microwave links, optical fibre systems, sonar, audio (acoustic) systems,  optics and electron waves in semiconductor devices.

In this experiment we shall be concerned with electromagnetic waves, nevertheless many (but not all) ofthe results and conclusions will apply to other kinds of wave such as acoustic or           electron waves.  This experiment has two main parts that deal with important aspects of wave      propagation:  The first part is “Interference ofwaves”, that will investigate the superposition        effect of two waves, and the second part, “Diffraction of waves” will concern the effect of           superposition of multiple waves, which is commonly manifested by the “bending of wave paths   at the edges of obstacles” .  Additionally, two more sections include the polarisation of waves       and “Antenna Arrays”.  You will be asked to explain aspects of the theory and to show your         theoretical calculations as part ofthe answers to the questions indicated in this script.

Part 1 Interference of waves

In this section we will be concerned with monochromatic waves, that is, waves ofthe same,  single frequency, not made up of a superposition of multiple components of different frequency – like for example, a beam of sunlight.

Two waves at the same frequency will give rise to interference effects when they overlap.

This effect appears in numerous practical

applications.  It is the basis of interference fringes in,  for example, optical interferometers and in the design of antenna arrays.  The figure illustrates the                 phenomenon with water in the sea where waves and   their reflections from the coastline interfere.  You       can also see Fig. 3.5 in the course lecture notes where an interference pattern is generated by the                    superposition oftwo waves propagating in different    directions.

In this experiment we investigate a particularly simple case of interference of waves emitted from two narrow aperture sources.  The experiment is    essentially the microwave counterpart ofYoung’s two-slit experiment in optics.  Microwaves are

Interference and diffraction of waves in water.

Picturefrom:

convenient for us because their wavelength is much longer than those of optical waves, and the

http://www.afhalifax.ca/magazine/zero/3164- 2/en-sequence-physique-sp02

interference pattern can therefore be measured with reasonable accuracy using a simple apparatus.

Consider the situation shown in Fig.1.

Fig. 1 Two in-phase sources, S1 and S2, illuminating an observation plane.

Two sources, S1 and S2, with equal amplitude and phase illuminate an observation plane         where we consider an arbitrary point at a distance x from the central point denoted by 0.  The       sources could be ‘line sources’ (along z) or ‘point sources’ generating cylindrical or spherical      waves, respectively.  In either case waves propagating away from a source will suffer some         reduction in intensity (|E|2)1 with 1/r or 1/r2, respectively.  Ifthe distance from the sources to the point x=x, l1 and l2, are nearly equal ( (l1 − l2)D << 1) we can approximate and neglect the difference in amplitudes at the observation plane. However, we cannot neglect the difference in phase. Hence, we can see that there will be constructive interference at some position x when      the path lengths l1 and l2 differ by zero or an integer number ofwavelengths i.e. when l1 – l2 = nλ .  Similarly, there will be destructive interference at some position x when the path     lengths l1 and l2 differ by an odd integer number of halfwavelengths i.e. when l1 – l2 =                (2n+1)λ/2.  Thus, along the x-axis there will be a series ofmaxima and minima of intensity.

We can easily calculate a general expression for the intensity along the x-axis.  The total field at x, on the observation plane without approximation is given by2:

ET = + (1)

Here we have considered a 1/r-fall off of field (i.e. a 1/r2 fall-off of intensity), corresponding to a point source radiating in 3D space (spherical wave).

From Fig. 1 we have:

sinθ1 = (d2 − x)l1

also:                   sinθ2  = (d2 + x)l2

Then, since sin2θ+ cos2θ= 1 we can write:

l1  = D cosθ1 + (d2 − x)sinθ1

l2  = D cosθ2 + (d2+ x)sinθ2

Now if l1 ≈ l2 ≈ D, we can approximate ET in (1) by:

1    Here we define “Intensity” as the square ofthe amplitude ofthe wave. Notice that in some other contexts


ET 1 (ejkl1  + ejkl2 )

and substituting (2):

ET (ejk (d 2−x)sinθ1+D cosθ1 + ejk (d 2+x)sinθ2 +D cosθ2 )               (3)

Since θ1 and  θ2 are small, we can make the following approximations:

sinθ1 ≈θ1 ≈ (d2 − x)D and similarly,  sinθ2  ≈θ2  ≈ (d2+ x)D .    Then, for the cosine terms (using the first 2 terms ofthe Taylor series), we have:

1                  1 and  cosθ2  ≈ 1 −θ22 2 .


Q1. The square ofthe magnitude ofthe electric field is known as the intensity. Show in your report that the approximations above lead to:

ET 2 cos (4)

From this expression, what is the distance between consecutive maxima or minima?


Q2. Download and run the Matlab script Interference.m that calculates the intensity versus position x using eqn. (1) directly instead of using the approximate expression (4). Modify the   script to include a calculation of the intensity as it varies with the displacement x ofthe observation point on the screen using eqn. (4) as well and plot this in the same figure as the results from eqn. (1). Comment on the approximations used in (1)-(4), compare the results and discuss and explain the differences

Experiment 1.1: Interference of waves

For this part of the experiment, you will be given experimental data obtained using the set-up described schematically in the following diagram.

Fig. 2 Experimental arrangementfor the interference experiment. Note that the picture is not at scale. In the

practical situation D >> d.

Two in-phase equi-amplitude ‘point’ sources are provided by the rectangular waveguide T-   junction feeding two open-ended waveguides of equal lengths.  The signals from both sources   are received by the horn at the right and fed to a microwave detector and amplifier.  The horn is moved along a ruler on the x-axis and the measured output is observed as the horn is moved.

The whole excursion along the x-axis is ±36 cm and the horn is kept aligned along they-axis       throughout this experiment.  The input is provided by a microwave generator connected through a coaxial cable to the waveguide T-junction.  It generates a microwave signal of 10 GHz             modulated in amplitude with a 5 KHz square wave signal.  We need to measure the intensity of  the total field received by the horn and this is done using the setup indicated in the figure.  The

dimensions in Fig. 2 are: D = 255 cm and d = 63 cm.

Fig. 2 Experimental arrangementfor the interference experiment. Note that the picture is not at

scale. In the practical situation D >> d.

At the receiver end there is a horn followed by a “detector”, which is a piece ofwaveguide with a probe or a small antenna inside, connected through a microwave diode to the output      coaxial cable.  The signal received by the horn is very low and needs to be amplified before is sent to the meter.  This is done by an amplifier circuit connected between the detector and the meter.

Q3. Explain the function ofthe detector diode. What is the frequency ofthe signal carried by the coaxial cable to the meter in the setup described in the figure above?

What is the relation between the electric field intensity received by the horn and the magnitude of the signal (current) coming from the detector through the coaxial cable? It happens that the output of the detector is proportional to |E|2 i.e., is proportional to the field intensity; can you explain why?

Experiment 1.2 Measurement ofrelative permittivity ofa dielectric material

Consider now the modified set-up shown in Fig. 3.  A dielectric slab is now interposed            between one of the waveguide sources and the receiving horn.  The dielectric slab will introduce an extra phase difference in one ofthe paths and this will cause a shift in the interference pattern in the observation plane.

Fig. 3 Experimental arrangementfor measurement of relative permittivity of a dielectric sheet.