Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit


Economics 440

Public Finance

Winter 2022

Assignment 2

1.  Consider the following numerical version of the manufacturing/fishing externality problem that was discussed in class. Let:

❼ gm , Pm  denote the quantity produced and price of manufactures ❼ gf , Pf  denote the quantity caught and price of fish

❼ z denote the amount of pollution created by the manufacturer.           Let the technologies for the two firms be represented by the cost functions:

❼ Manufacturing: cm (gm | z) = 3gm(2) + (z _ 2)2

❼ Fishing: cf (gf | z) = 3gf(2) + 3z

That is, cp (gp | z) is the total cost of producing gm  manufactured goods when the level of pollution is z.  Similarly, cf (gf | z) is the cost of catching gf  fish when the level of pollution is z. Profit (which firms maximize) is defined as the difference between total revenue and total cost.

Let Pm  = 13!5, Pf  = 12, and assume that pollution is generated through manufacturing production according to the function : z = !5gm .

a. How much pollution, z* , will be produced if the firms are independent enterprises?

b. How much pollution will be produced if the firms merge? If your answer is different from that derived in part a., what accounts for the difference?

c. Find the Pigouvian tax, π , that induces the independent manufacturer to produce the same amount of pollution as it would if it were merged with the fishing firm.

 

2.  Consider an economy with one private good (z), one public good (y), and two households with the following utility functions:

vh (zh | y) = ←zh + (1 _ ←) ln y              于or h = 1| 2!

Each household is endowed with Th units of the private good, and there is a technology for producing the public using the private good:

y = 礻zy(γ)                礻 2 0   | α 卡 1

where zy  is the amount of the private good used to produce the public good, rather than consumed.

Derive the “Samuelson” condition for this economy (i.e. the condition satisfied by any Pareto efficient allocation).


3. There are two drivers on a public highway. Driver h chooses speed sh , with his/her utility increasing in how fast he/she drives.  The higher either driver’s speed, however, the more likely that they are involved in a mutual accident.

Let δ(s1 | s2 ) denote the probability of an accident if the drivers choose speeds s1  and s2 , where

In the event of an accident, each driver incurs monetary cost, dh . Drivers have quasi- linear preferences over speed and money, and maximize expected utility:

E ┌vh (sh | dh )┐ = u (s )hh _ δ(s | s )d12h |


h = 1| 2!

a.  Show that each driver has incentive to choose an inefficient speed.

b.  Suppose that driver h is fined an amount th  in the event of an accident. What are the fines t1  and t2  that induce drivers to choose speed efficiently?

c. Does fining drivers in the event of an accident result in a Pareto improvement?

 

4. Let there be H identical households, each with endowment y of a private good, and utility v(z | G) = ←z G, wherehh zh  is the quantity of private good consumed by household h, and G the amount of public good available to all households. Let the public good be produced one-for-one using the private good. (Note: this implies: MRT=1).

Household h’s budget is given by zh + gh  = y , where y is the household’s endowment and gh  the amount of private good that household h voluntarily contributes toward production of the public good.

a. Let all households behave competitively and take G as given.  Find the equilib- rium allocation of resources under voluntary provision of the public good. Is the allocation efficient? Why or why not?

b.  Can the government achieve the optimal allocation in a competitive market by providing the public good itself and financing this with an identical lump-sum tax on each household? If so, what must the tax be?

c.  Suppose that H is small enough that that households do not take G as given. That is, households see their utility function as

v(zh | G) = ←zh  ┌ h gh ┐ |

and thus take in to account the effect of their choice, gh , on the amount of public good available. Find the symmetric (gh  = g for all h) equilibrium allocation when each household takes others’ contributions (i.e. gj  for all j  h) as given.