Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit


STATS 100B Homework 1

2017

 

Problem 1 (15 pts)

Let Mx (t) = et + e2t + e3t  be the moment-generating function (MGF) of a random variable X .

a. Find E(X). (5 pts)

b. Find Var(X). (5 pts)

c. Find the distribution of X. (5 pts)

Hint: consider the definition of MGF for discrete distributions.

 

Problem 2 (15 pts)

Show that the moment-generating function of a random variable X ~ Gamma(α, β) is Mx (t) = (1 _ βt)a .

Note that the pdf of Gamma(α, β) is

f(x) =

xa1 e一年/8

β a Γ(α)  ,

α, β > 0,    x > 0.

 

Problem 3 (15 pts)

Show that the moment-generating function of a random variable X ~ NegativeBinomial(r, p) is

Mx (t) = ┌ .r .

Note that the mass function of NegativeBinomial(r, p) is

P (X = x) = pr (1 _ p)年一r ,    x = r, r + 1, . . . .


Problem 4 (20 pts)

Let X ~ Poisson(λ). Its moment-generating function is Mx (t) = eA(ey 1) .

a.  Show that the moment-generating function of Z = ′A(x一)A  is given by

MZ (t) = e ′At eA (ey y_ 1) .

(10 pts)

b. Use the series expansion of

et/′A  = 1 + t/λ +  t/λ2  +  t/λ3

to show that

lim MZ (t) = et /2 .

A→&

In other words, as λ → &, the ratio Z = ′A(x一)A  converges to the standard normal distribution. (10 pts)

 

Problem 5 (10 pts)

Use the results of Problem 4b to answer the following question.

In the interest of pollution control an experimenter wants to count the number of bacteria per small volume of water. Let X denote the bacteria count per cubic centimeter of water, and assume that X ~ Poisson(1000). If the allowable pollution in a water supply is a count of 1100 bacteria per

cubic centimeter, approximate the probability that X will be at most 1100.

Hint: consider the standard normal cumulative distribution function.

 

Problem 6 (10 pts)

Let X1 , X2 , . . . , Xn  be independent normal random variables with means µi  and variances σi(2). Show that Y =      αiXi , where αi  are scalars, is normally distributed, and find its mean and variance.

 

Problem 7 (15 pts)

Suppose that Θ is a random variable that follows Gamma(α, β), where α is an integer and β > 0, and suppose that, conditional on Θ, X follows Poisson(Θ). Show that the unconditional distribution of α + X is NegativeBinomial(α, ).

Hint: The MGF of X ~ Poisson(λ) is Mx (t) = eA(ey 1) . Please consider the Tower Rule and the

results of Problems 2 and 3.