Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit


COM 2004

DEPARTMENT OF COMPUTER SCIENCE

DATA DRIVEN COMPUTING

AUTUMN SEMESTER 2017–2018

 

1. This question concerns probability theory.

a)     The discrete random variable X represents the outcome of a biased coin toss. X has the probability distribution given in the table below,

x

H

T

P(X = x)

θ

1  θ

where H represents a head and T represents a tail.

(i)   Write an expression in terms of θ for the probability of observing the sequence     H, T, H, H.                                                                                                         [5%]

(ii)   A sequence of coin tosses is observed that happens to contain NH  heads and     NT tails.  Write an expression in terms of θ for the probability of observing this     specic sequence.                                                                                             [5%]

(iii)   Show that having observed a sequence of coin tosses containing NH heads and NT tails, the maximum likelihood estimate of the parameter θ is given by

NH      

NH +NT

[20%]

b)     The discrete random variables X1 and X2 represent the outcome of a pair of independent but biased coin tosses. Their joint distribution P(X1,X2) is given by the probabilities in the table below,

 

X1 = H

X1 = T

X2 = H

λ

X2 = T

ρ

(i)   Write down the probability P(X1 = H,X2 = H).     (ii)   Calculate the probability P(X1 = H) in terms of λ . (iii)   Calculate the probability P(X2 = H) in terms of λ .

[5%] [5%]

[5%]

(iv)   Given that the coin tosses are independent and that λ is greater than 0, use your      previous answers to calculate the value of λ.                                                   [15%]

(v)   Calculate the value of ρ .                                                                                    [5%]

c)     Consider the distribution sketched int the gure below.

p(x) 

0                     b         x                     1

 

  2λ   if 0 <= x < b

(i)   Write an expression for λ in terms of the parameter b.                                    [15%]

(ii)   Two independent samples, x1 and x2, are observed. x1 has the value 0.25 and      x2 has the value 0.75. Sketch p(x1,x2; b) as a function of b as b varies between     0 and 1.  Using your sketch, calculate the maximum likelihood estimate of the      parameter b given the observed samples.                                                       [20%]

2. This question concerns the multivariate normal distribution.

a)     Consider the data in the following table showing the height (x1) and arm span (x2) of a sample of 8 adults.

x1

151.1

152.4

152.9

156.8

161.8

158.6

157.4

158.8

x2

154.5

162.2

151.5

158.2

165.3

165.6

159.8

162.0

The joint distribution of the two variables is to be modeled using a multivariate Gaussian with mean vector, µ and covariance matrix, Σ .

(i)   Calculate an appropriate value for the mean vector,µ.                                      [5%]

(ii)   Write down the formula for sample variance.  Use it to calculate the unbiased     variance estimate for both height and arm span.                                             [10%]

(iii)   Write down the formula for sample covariance. Use it to calculate the unbiased     estimate of the covariance between height and arm span.                              [10%]

(iv)   Write down the covariance matrix, Σ .

(v)   Compute the inverse covariance matrix, Σ  1 .

b)     Remember that the pdf of a multivariate Gaussian is given by

p(x) = Ce 12 (x µ)TΣ  1(x µ)

where C is a scaling constant that does not depend on x.

Using the answer to 2 (a) and the equation above, answer the following questions.

(i)   Who should be considered more unusual:

    Ginny who is 162.1 cm tall and has arms 164.2 cm long, or

    Cho who is 156.0 cm tall and has arms 153.1 cm long? Show your reasoning.

[5%] [15%]

[20%]

(ii)   A large sample of women is taken and it is found that 120 have measurements     similar to those of Ginny.  How many women in the same sample would be ex-      pected to have measurements similar to those of Cho?                                  [15%]

c)     A person’s ‘ape index’ is dened as their arm span minus their height.

(i)   Use the data in 2 (a) to estimate a mean and variance for ape index.              [10%]

(ii)   The gure below shows a standard normal distribution, i.e., X  N(0, 1).  The percentages indicate the proportion of the total area under the curve for each segment.

Using the diagram estimate the proportion of the population who will have an ape     index greater than 10.5?                                                                                    [5%]

(iii)   Using the gure above estimate the mean-centred range of ape indexes that     would include 99% of the population.                                                                [5%]

3. This question concerns classiers.

a)     Consider a Bayesian classication system based on a pair of univariate normal distribu- tions. The distributions have equal variance and equal priors. The mean of class 1 is less than the mean of class 2. For each case below say whether the decision threshold increases, decreases, remains unchanged or can move in either direction.

(i)   The mean of class 2 is increased.

(ii)   The mean of class 1 and class 2 are decreased by equal amounts. (iii)   The prior probability of class 2 is increased.

(iv)   The variance of class 1 and class 2 are increased by equal amounts.

(v)   The variance of class 2 is increased.

[5%] [5%] [5%] [5%]

[5%]

b)     Consider a Bayesian classication system based on a pair of 2-D multivariate normal distributions, p(x|ω1)  N(µ1,Σ1) and p(x|ω2)  N(µ2,Σ2) .  The distributions have the following parameters

 µ1 =   


µ2 =   


Σ1 = Σ2 =      


The classes have equal priors, i.e., P(ω1) = P(ω2).

Calculate the equation for the decision boundary in the form x2 = mx1 +c.

[25%]

c)     Consider a K nearest neighbour classier being used to classify 1-D data belonging to classes ω1 and ω2. The training samples for the two classes are

ω1 = {1, 3, 5, 7, 9}      ω2 = {2, 4, 6, 8}

The diagram below shows the decision boundaries and class labels for the case K = 1.

Make similar sketches for the cases K = 3, K = 5, K = 7 and K = 9.                       [25%]

d)     Consider a K-nearest neighbour that uses a Euclidean distance measure, K = 1, and the following samples as training data,

ω1    =   (0, 1)T , (1, 1)T , (1, 2)T 

ω2    =   (1, 0)T , (2, 1)T 

A point is selected uniformly at random from the region dened by 0 x1 2, 0 x2  2.

What is the probability that the point is classied as belonging to class ω1? [Hint: start by sketching the decision boundary.]

[25%]

4. This question concerns clustering and dimensionality reduction.

2              4              6

a)     The points in the above gure are to be clustered using the agglomerative clustering algorithm.  The cluster-to-cluster distance is dened to be the minimum point-to-point distance. In the initial clustering, C0, each point is in a separate cluster and the clustering can be presented as a set of sets as such.

C0 = {A}, {B}, {C}, {D}, {E}, {F}, {G}, {H} 

(i)    Point-to-point distances are measured using the Manhattan distance.  Perform the algorithm and use set notation to show the clustering after each iteration.

[10%]

(ii)    Point-to-point distances are measured using the Euclidean distance. Perform the      algorithm and use set notation to show the clustering after each iteration.      [10%]

(iii)    Draw a dendogram to represent the hierarchical sequence of clusterings found

when using the Euclidean distance.                                                                [10%]

(iv)   Consider a naive implementation of the algorithm which does not store point-      to-point distance measures across iterations.  Calculate the precise number of     point-to-point distances that would need to be computed for each iteration when      performing the clustering described in 4 (a)(ii).                                                [20%]

b)     Consider the following dimensionality reduction techniques

      Discrete Cosine Transform (DCT),

      Principal Coponent Analysis (PCA) transform and

      Linear Discriminant Analysis (LDA) transform.

They can all be expressed as a linear transform of the form Y = XM where M is the transform and X is the data matrix and Y is the data matrix after dimensionality reduc- tion.

(i)   Copy the table below and ll the cells with either ‘Yes’ or ‘No’ to indicate what information is required in order to determine M.

 

The data points

The class labels

DCT

 

 

PCA

 

 

LDA

 

 

[15%]

(ii)    PCA is being used to reduce the dimensionality of a 1000 sample set from 50      dimensions down to 5. State the number of rows and columns in each of Y , X     and M in the equation Y = XM that performs the dimensionality reduction.   [15%]

(iii)    Dimensionality reduction is to be used to reduce two dimensional data to one      dimension.   Draw a scatter plot for a two class problem in which PCA would      perform very badly but for which LDA would work well.                                   [20%]