Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH 3230: Abstract Algebra

Spring 2024

HOMEWORK 4

Due at the beginning of class, Thursday, March 7

(1) For each of the following groups G and subgroups H, ind all distinct left cosets of H in G. You do not need to write out aH for every a 2 G (there will be repeats); you can stop once you know you’ve found all distinct cosets.

(a) G = Z12 , H = f0, 3, 6, 9g

(b) G = U(15) = f1, 2, 4, 7, 8, 11, 13, 14g, H = f1, 4g

(c) G = S4 , H = f(), (23), (24), (34), (234), (243)g

(2) Recall the converse of Lagrange’s Theorem, which is not true in general: If G is a group and k divides jGj, then G has a subgroup of order k.  Prove that this statement is true if G is cyclic.

(3) Let G1  and G2  be isomorphic groups.

(a) Prove that if G1  is Abelian, then G2  must be Abelian.

(b) Prove or disprove:  The groups S3   and U(9) are isomorphic.  If you need to show they are isomorphic,  you must deine  a function from one to the other and show it’s an isomorphism.

(4) Let G1  and G2  be isomorphic groups.

(a) Prove that if G1  is cyclic, then G2  must be cyclic.

(b) Prove or disprove:  The groups  U(7) and  U(9) are isomorphic.   If you  need to  show they are isomorphic, you must deine a function from one to the other and show it’s an isomorphism.

(5) Let G1  and G2  be isomorphic groups.  Prove that if G1  has a subgroup of order n, then G2  has a subgroup of order n.