Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

FEEG6007

SEMESTER 1 EXAMINATION 2016/17

FUEL CELLS & PHOTOVOLTAIC SYSTEMS 1

SECTION A

Q1.  Write illustrated notes on TWO of the following:

(a)    Write the general equation for the cell voltage of a typical battery that illustrate the influence of the standard electrode potential of each reaction and the IR drop. Explain the polarization curve that results from this equation. Include the appropriateness of using reference electrodes to study the half-cell reactions and indicate how  the  potential  they  measure,  relates  to  the  overall  cell voltage. What are the typical reference electrodes that can be used to measure the potential of the half-cell reactions and how do they relate to the standard hydrogen reference electrode?

(b)    In  a  typical   hydrogen/air  fuel  cell,  describe  the  cell  and   its components as well as the operational parameters. State clearly any  advantages  and  disadvantages  and  the  importance  of hydrogen.

(c)    what is the meaning of the Nernst-Planck equation? Describe the significance  of  each  term   in  the  equation   in  relation  to  the transport  of  ions  through   an  ion  exchange  membrane.  Use diagrams to illustrate.

Your  answer  should  include  sketches,  reactions  and  mathematical expressions, where appropriate. [2 × 12.5 Marks]

Q2.  Answer ALL parts of this question.

(a)    Describe the key features of a redox flow battery. Include in your description   examples   of   fully    balanced   equations   for   the reactions taking place at the electrodes. [5 Marks]

(b)    What  are  the  major  requirements  of  the  electrodes  and  ion exchange membrane in a redox flow cell? [5 Marks]

(c)    Calculate  the  equilibrium  cell  voltage  and  the  minimum  Gibbs free   energy   necessary   to   start   charging   the   vanadium   – vanadium  redox  flow  battery,  per  mole  of  vanadium.  Use  the following equations and potentials:

Negative electrode:   V(III) + e- V(II);      Ee  = -0.26 V vs. SHE

Positive electrode:     V(IV) - e-      不 V(V);      Ee  = +1.00 V vs. SHE [6 marks]

(d)    Assume  a  stack  with   100  electrode   bipolar  cells  of  80  cm2 geometrical area in each electrode, and a current density of 20 mA cm-2 , calculate the kilograms of V(II) produced in 24 hours. State clearly any assumptions made in the calculation. [5 marks]

(e)   Discuss why the initial cell voltage during charge is typically 1.5 V and  increases  with  time.  What  can  be  done  to  decrease  this applied cell potential so the energy spent during charge is lower? [4 marks]

Faraday constant = 96 485 C mol-1 ;

Molar mass of vanadium = 50.94 g mol-1 .

Q3.  Answer ALL parts of this question.

Methanol is consumedat a rate of 32 g h-1  in a methanol-air fuel cell.

(a)    At an open-circuit cell voltage of 0.756 V, what  is the available maximum theoretical energy (in kWh kg-1) from the cell? [5 Marks]

(b)    What is the main cathode reaction, anode reaction and cell reaction?  What  are  the   possible  secondary   reactions  or processes that lower the current efficiency? [6 Marks]

(c)    In 35 hours,what is the maximum energy available (in kJ) from

the cell? What assumptions you need to make to calculate the current and what is the value? [9 marks]

(e)    State the major limitations of methanol fuel cells and what can be done to improve the energy efficiency. [5 Marks]

Faraday constant = 96 485 C mol-1 ;

Molar mass of methanol = 32.04 g mol-1;

1 kJ 1 = 2.76 × 10-4  kW h

SECTION B

Q4.  Answer ALL parts of this question.

(a)    A beam of light at a wavelength of 600 nm, with a spectral width of 5 nm and spectral irradiance of 1200 W m-2  μm-1 , illuminates an area of 10 cm2 .

(i)     What voltage could this beam generate if converted to electricity? [3 Marks]

(ii)     What current could this beam produce? [6 Marks]

(b)    Figure   1   (on   the  following   page)  shows  the  graph  of  the maximum  current  density  that  can  be  generated  by  a  single- junction solar cell as a function of the semiconductor bandgap, under illumination with the standard solar spectrum. Using this graph,  determine  the   maximum   conversion   efficiency   of  a crystalline silicon solar cell. [6 Marks]

(c)    Using the graph in Fig. 1, determine the maximum efficiency of a double-junction  solar  cell  manufactured  from   semiconductors with bandgaps of 1 eV and 2 eV. [6 Marks]

(d)    Describe  briefly  how  the  following  changes  would  affect  the parameters of the current-voltage characteristic of a solar cell:

(i)     Reduction in quantum efficiency

(ii)     Increase in series resistance [4 Marks]

Bandgap of crystalline silicon = 1.12 eV

Wherever appropriate, use a fill factor equal to 0.85.

Figure 1

Q5.  Answer ALL parts of this question.

(a)    Describe the principal steps in the manufacture of a crystalline silicon solar cell. [17 marks]

(b)    A  15% efficient solar cell is manufactured from a 350  μm thick silicon wafer. Assuming 200 μm kerfloss in wafering, what is the silicon usage (in grams per Wp) in the cell manufacture? [ 5 marks]

(c)    Compare and contrast a typical crystalline silicon solar cell with a typical cadmium telluride solar cell with respect to:

(i)     Efficiency

(ii)    Amount of material used in manufacture [ 3 marks]

Silicon density = 2.33 g/cm3

Q6.  Answer ALL parts of this question

(a)    Concisely discuss the principal features of the following solar energy systems and applications:

- Solar-powered lighthouse

- Concentrator systems

- Building integrated systems in Southampton [ 12 Marks]

(b)    A photovoltaic module consisting of 36 crystalline silicon solar

cells has the following parameters: Voc = 22 V; Isc = 3.5 A; Pmax =   64 W.  The operation of this module can be described by an ideal current-voltage characteristic.

(i)     Determine the dark saturation current of this module under standard test conditions at the standard test temperature. [5 Marks]

(ii)    How many such modules would you need to power a daily load of 300 Wh in a location with daily solar radiation of 5 kWh  m-2 ,  for  a  system  that  operates  with  a  maximum power-point tracker? [3 Marks]

(iii)   The module is installed as part of an array where external wiring  introduces  a  series  resistance Rs = 0.7 ohm.  If  the current at the maximum power point is equal to 90% of the short-circuit current, what  power will the  installed  module produce under standard test conditions? [5 Marks]

Boltzmann constant kB = 8.61 ×10-5 eV K-1

Conversion to absolute temperature scale: [K] = [°C] + 273.15

Electron charge 1.602 × 10-19 C