Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Building physics

Second call – 27/01/23 – exercises

Exercise 1 (2 pts)

A heat engine receives 1000 W of energy from a source at 700 K and produces 600 W of work, while discharging heat to a low temperature sink at 300 K. Calculate the efficiency of the engine and determine whether it is acceptable based on the second law of thermodynamics.

(0.6 not possible because higher than the Carnot efficiency)

Exercise 2 (2 pts)

A closed system contains 2 mol of helium (ideal monoatomic gas with molar mass of 4 g/mol) at 400 °C and 2 bar. Calculate the final temperature and the exchanged work when a heat of 2000 J is provided to the system along an isobaric transformation.

(721.3 K ;800 J)

Exercise 3 (2 pts)

A mass flow rate of 100 kg/s of steam enters a turbine at the temperature of 300 °C and a pressure of 2 MPa. Calculate the isentropic efficiency of the turbine and the exchanged work knowing that the outlet pressure is 10 kPa and the vapor quality at the outlet is 0.85.

(0.907; 77.91 MW)

Exercise 4 (2 pts)

A volumetric flowrate equal to 1000 m3/h at 30 °C and 60% of relative humidity is cooled down to a temperature of 15 °C. Calculate the cooling power required and the mass flow rate of condensate produced.

(9.22 kW; 1.72 g/s)

Exercise 5 (2 pts)

A wall characterized by a U-value of 0.8 W/(m2 K) separates an indoor ambient at 20 °C and with 70% as relative humidity from the outdoor environment at - 10 °C. Determine whether there is surface condensation on the internal wall and in correspondence of a thermal bridge due to the presence of a pillar, where the heat flux is two times the one of the wall. Consider 7 W/(m2 K) as heat transfer coefficient on the indoor surface.

(no condensation; yes condensation)

Exercise 6 (2 pts)

Calculate the layer of insulation which is necessary to add to the wall with the given stratigraphy in order to meet the requirements of a building regulation which imposes a U-value lower than 0.21 W/(m2K). Assume a thermal conductivity for the insulation equal to 0.038 W/(m K) and heat transfer coefficient of 25 and 10 for the outdoor and indoor surfaces respectively.

Exercise 7 (2 pts)

A cavity filled with air is made of two flat walls at the temperatures of 20 °C and 80 °C respectively. Calculate the heat transfer between the two walls by convection and radiation, knowing that the heat transfer coefficient by convection is 1.2 W/(m2 K), and that both walls have an emissivity of 0.7.

(72 W/m2; 249.4 W/m2; 321.4 W/m2)

Exercise 8 (2 pts)

An underfloor with a surface temperature of 30 °C is used to heat a room where the air is at 20 °C. Determine the heat transfer coefficient by convection between the air and the floor’s surface using the proposed correlation. Choose the correct properties and consider 1 m as characteristic length for the floor.

SECOND PART

The underfloor heating system of a building is connected to an air-source heat pump, which provides an heating capacity of 4 kW with a COP of 4 when the outdoor air temperature is -3 °C. Calculate:

-     the mass flow rate of water delivered to the underfloor heating system if the temperature difference between supply and return is 6 °C;

-     the electric power required to power the heat pump and heat duty at the evaporator;

-     the refrigerant mass flow rate, knowing that the  enthalpy of the refrigerant (R134a) at the outlet of the compressor is equal to 290 kJ/kg and the condensing pressure is 10 bar;

-     the isentropic efficiency of the compressor considering that the evaporation temperature is 3 °C lower than the outdoor air temperature.

(0.159 kg/s; 1 kW; 3 kW; 0.022 kg/s; 0.70)