Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

CVEN9405 – Assignment

Please note:

a.   The assignment must be submitted to Moodle as a PDF file. The link to submit the Turnitin link is located under the assignment section in Moodle.

b.   Solve the problems using the solutions provided and submit a maximum of one page on your findings, interpretations and insights about each section. A total maximum of four pages must be submitted for this assignment.

Section 1: Trip Generation

Trip generation modelling is one of the essential components in transport planning studies. This assignment aims at developing a trip generation  model at the  household  level and checking its performance on an out-sample test dataset. The dataset of this study is extracted from several surveys in South East Queensland.

To complete this assignment, you need to download the main dataset from Moodle.

Data

The  uploaded  dataset  is  a  combined  database  of several  surveys  of randomly selected households in South East Queensland, collected from April 2009 up to May 2012. This dataset includes some information on households’ attributes and the number of trips per day.

Report the descriptive statistics of the main dataset. For integer and continuous variables, report the mean and standard deviation and for the categorical variables, report the frequency of each category.

Model Estimation

In practice, it is not known which set of variables truly governs the trip generation behaviour of  households.  Therefore,  the  modelling  practice  starts  with  speculation  on  reasonable variables to include in the model. Note that, the availability of data is always a limiting factor at this stage, so you cannot include a variable whose values are not available.

In this exercise, five sets of variables are decided to be tested. Run a regression model for the following set of independent variables (model estimation can be done in R or other software packages).

1.   Household size, Household structure, Household income, vehicle ownership 2.   Household size, Household structure, Household income

3.   Household size, Household income

4.   Household size

5.   Household income

For each  model,  report the estimated  parameters, their corresponding t statistic and the coefficient of determination of the model. Provide a plot for each model which demonstrates how it fits the data.

Model Selection

Discuss your findings from the model estimation process. In specific explain the following items

1.   Which coefficients are statistically significant, and which ones are not?

2.    Explain the meaning of the estimated coefficients and whether the estimated sign is expected or not.

3.   Discuss the magnitude of the models intercept.

4.   Compare the goodness-of-fit of the models (coefficient of determination).

Select the most suitable model out of the five estimated models. Justify your choice based on the discussed items in this section and the number of independent variables in the model.

Section 2: Development and Application of a Gravity Model

The picturesque Sharington region is a rapidly developing area to the southwest of the major metropolis of Givingly, a city which has similar features to that of Sydney, Australia. Sharington is 50km away from the CBD of Givingly and as a result, the region contains residential, commercial and industrial land uses. Growth and appeal of the area are a result of housing price pressure and improving transport infrastructure which has increased accessibility to and from Sharington.

Sharington  Local  Council  is  preparing  a  transport  master  plan  and  is  seeking  transport planning advice from your consulting firm. Sharington can be separated into 5 zones as shown in Figure 1.

 

Figure 1: Study area of Sharington Local Council

Intra-zonal travel is present and the geography of the study area has resulted in some zones being adjacent to one another whilst others are separated and connected with the  road network as presented in Figure 1 (note that this represents only main roads and highways). Recently, Sharington conducted traffic surveys during the  morning AM  peak  period. The surveys were  processed  to  form  a  travel  time  matrix  (presented  in  Table  1)  and  a  trip distribution matrix (presented in Table 2) that provides an accurate reflection of the existing travel conditions during the AM peak period. The adjacency and separation of the zones are reflected  in  the  travel  times  and  as  such  the  council  has  urged  your  consulting  firm  to categorise the zones and zone-to-zone travel based on geographical proximity.

Table 1: Observed travel time matrix

Zones

1

2

3

4

5

1

6

12

16

18

11

2

11

7

12

19

13

3

16

11

7

11

18

4

19

20

11

8

22

5

12

14

21

24

6

Table 2: Observed Trip Distribution Matrix

Zones

1

2

3

4

5

 i

1

110

20

30

50

260

470

2

40

15

30

20

100

205

3

10

5

15

30

20

80

4

70

10

150

250

190

670

5

90

15

30

40

285

460

Dj

320

65

255

390

855

1885

Answer the following questions:

a)   Based on the information presented in the description, define appropriate travel time intervals for the region and categorise each zone within the region into the defined    travel time intervals. Present your categorisation clearly using a table.

b)  Sharington Local Council has requested for the trip distribution in the study area to be estimated using a gravity model

i.      Calibrate the gravity model for the given existing travel time matrix and observed trip distribution.

ii.      Which zone pairings least match the observed counts? Provide a reason for why these zone pairings differ more than the other zone pairings?

iii.      Estimate the mean absolute error ratio for this model. Provide a comment on the acceptability of the model.

c)   Use the 2025 expected travel time matrix (see Table 3) and the predicted   productions and attractions of Sharington (see Table 4) to estimate the trip distribution in 2025.

i.      Use the calibrated friction factors and socio-economic parameters to apply  the gravity model. Perform row and column factoring to obtain a converged model and present the trip distribution rounded to the nearest integer.

ii.      Describe in 3 dot-points the differences between the existing travel patterns in Sharington and the 2025 travel patterns.

Table 3: 2025 expected travel time matrix

Zones

1

2

3

4

5

1

8

15

18

24

15

2

17

9

14

21

18

3

18

14

7

11

20

4

21

26

13

9

23

5

15

14

21

22

8

Table 4: Predicted Productions and Attractions of each zone in 2025

Zones

1

2

3

4

5

Total

Productions

500

400

400

800

500

2600

Attractions

400

400

300

500

1000

2600

Section 3: Introduction to Mode Choice

The introduction of the CBD & South East Light Rail in Sydney will provide an additional mode of travel for commuters between the CBD and UNSW. The state government acknowledge that the success of the light rail introduction will be based on uptake of the service and the following mode choice exercise can be used to discover the potential impacts.

Currently, there are two possible modes to travel to UNSW from the CBD; using a private vehicle (car) or using the bus service. A study into the satisfaction and features of each mode yielded the following calibrated utility function:

Uk = ak  0.025xaccess  0.032xwait  0.015xinvehicle  0.001xcost

Where: xaccess= Access and egress time of mode K (minutes)

xwait = Waiting time of mode K (minutes)

xinvehicle = In-vehicle travel time of mode K (minutes)

xcost = monetary cost to travel on a single trip using mode K (cents)

ak = constant

The variable values for the car mode and the bus service are presented in Table 1.


The current demand for travel between the CBD and UNSW is 80,000 trips per day. The expected demand in the future scenario is 100,000 trips per day.

Considering the description, please answer the questions below

a)  What type of utility formulation is used? What is an advantage of using this

formulation and why is it an advantage? What is the significance of the constant ak   in the function?

b)  Apply the logit mode to estimate the existing mode-share between car and bus

(present proportions (rounded to 2 d.p.) and number of trips, rounded to the nearest   integer). What type of logit model was applied? What is the daily revenue that can be generated from the bus service?

Another stated  preference survey conducted by the state government  provided customer expectations of the attributes of the existing modes and the future light rail system. In addition to this, transport planners have determined the cost of using all 3 modes in the future. The forecasted variable values for the three modes are presented in Table 2


c)   Apply the logit mode to estimate the future mode share between the 3 modes

(present proportions (rounded to 2 d.p.) and number of trips, rounded to the nearest   integer). What type of logit model was applied? What is the daily revenue that can be generated from all public transport services?

d)  Will the inclusion of light rail increase fare revenue for the state government? Is fare revenue the only factor to consider when introducing a new mode or any new public transport infrastructure? If not what are other factors transport planners and traffic engineers would consider.

As a means to reduce private vehicle usage in the study corridor, the state government is considering the following proposals.

.     Proposal A: Reduction of parking provision across the corridor, increasing the expected access time to use a car by a further 5 minutes.

o The daily cost of implementing this proposal to the government is estimated to be $10,000.

.     Proposal B: Increasing registration costs of private vehicle owners such that the cost of a trip increases by half of the existing cost.

o The daily cost of implementing this proposal to the government is estimated to be $15,000.

e)  Assess each proposal by completing the following:

.     Estimate new mode share assuming each proposal is successful. Do both proposals achieve the objective of the state government to reduce private  vehicle usage?

.    Calculate the expected revenue and determine if either of the policies provides a benefit relative to future scenario presented in part c).

f)    In the future, assuming all other factors remain as expected, what is the minimum cost of travel increase for the private vehicle mode that would eliminate its mode   share?

Section 4: User Equilibrium

Two routes connect a commercial area (Urbania) and a residential area (Homesville). During the peak-hour morning commute, a total of 10000 vehicles travel from Homesville to Urbania. Route 1 has a 100km/hr speed limit and is 10km in length; Route 2 has a 75km/hr speed limit and has a distance of 5km. The free flow travel time can be calculated by considering the fundamental physical properties.

Considering that vehicular volumes are described based on thousands of vehicles per hour (example 1000 veh/hr = 1 thousand-veh/hr), past research has shown that:

.    The travel time of route 1 increases by 2 minutes for every additional 500 vehicles added to the route.

.    The travel time on route 2 increases with the square of the number of vehicles.

Questions

a)   Determine the user equilibrium travel times and the associated flows on each route for the given demand? Clearly present cost functions, equilibrium conditions and demand conservation equations.

b)   Under user equilibrium conditions, is there a demand scenario (vehicles travelling from Homesville to Urbania) during the morning peak-hour where either Route 1 or Route 2 is not utilised? If so what is the level of demand and which route is

redundant?

c)   Provide one strength and one weakness of the functional forms used to describe the cost of each route. What is a possible improvement that could be made to enhance   the depiction of travel costs in this example?