Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

CONTROL M (ENG5022)

14th December 2016

SECTION A

Q1.

(a)   State the Nyquist sampling theorem. Given a sampling time T, what is the

shift in frequency between two aliased harmonics 1    and 2  ?                       [5]

(b)   Consider  a  continuous  signal R(z)  with  the  following  qualitative  spectral content:

Sketch the magnitude of the same signal after sampling, TR* , highlighting aliasing. [5]

(c)

Describe a workaround to prevent aliasing to occur, assuming that you cannot alter the sampling frequency s .    [4]

(d)

Sketch the spectral content of the sampled signal again, when the workaround is in place, showing and explaining how aliasing is prevented.                        [6]

Q2

(a)

Draw the structure of a two-degree-of-freedom feedback controller. Show the   different signals, including disturbances, and explain their physical meaning. [4]

(b)

What are the three terms of a PID controller? Give the control law in the time domain and in the Laplace domain.                                  [4]

(c)

What is controller design by pole assignment and how can this method be used to design a controller  in transfer  function  form, C(s) = ,  given  a plant P0 (s) = ? Discuss the use of the polynomial Diophantine equation in this   design method. What   is   the   significance   of  the   characteristic polynomial,   and how   is   it related   to the   closed   loop   sensitivity   and complementary sensitivity?                                          [7]

(d)       In the state space description

̇(x)(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

what is the requirement in terms of the properties of the matrices / vectors A, B,  C  and  D  for  which  the  system  is  stable.  What  are  the  corresponding requirements for a transfer function G(s).           [5]

SECTION B

Q3

(a)

(b)

(c)

The  following  transfer  function  is  a  lag  network  designed  to  increase  the steady-state gain by a factor of 10 and have negligible phase lag at Φ1 = 3 rad/s :


Find the gain (in dB) at Φ1 . Assuming a sample time T = 0.25 s, calculate the Nyquist frequency Φn .             [2]

Design the discrete equivalent of H(s) using the backward rectangular rule.  [4]

Compute the discrete equivalent of H(s) using the pole-zero matching technique (match the steady-state gain).                                                         [10]

(d)       Find the gain (in dB) at Φ1    of the discrete equivalents, and compare with that of H(s). [4]

Q4

(a)

(b)

(c)

The following transfer function is a lead network:


Find the discrete equivalent of it, when preceded by a zero-order hold (ZOH), for sample time T = 0.25 s. Use 4 significant digits for all numbers in the solution. [8]

Using the inverse z-transform, find the corresponding difference equation. [4]

State a necessary and sufficient condition for BIBO stability and determine whether the difference equation is BIBO stable.                                              [8]

Section C

Q5       A pendulum can be described by the following differential equation:

where θ(t) is the pendulum angle, τ(t) is an external applied torque, g is the gravitational constants, C  is the damping coefficient, m  is the mass, I  is the inertia and l isthe length of the pendulum.

(a)      Derive the linear transfer function in the s-domain for this model, considering the angle θ to be the output, and the external torque τ to be the input. You can assume that the angle θ is small. For the resulting transfer function, show how the  natural  frequency  幼n    and   the   damping   ξ   depend   on  the  physical parameters of the pendulum.                                                                            [5]

(b)       Calculate the transfer function of the pendulum plant, P(s), for the following physical values:  m = 5kg,  I = 0.2kgm2 ,  l  = 0.4m,  C  = 0.5Nms/Tad,  and g = 9.81m/s2. What are the values of 幼n  and ξ?              [3]

(c)      Figure  Q5  shows  the  Bode  frequency  response  plot  of  the  plant  transfer function P(s) derived in (b).

(i)        Discuss properties  of the time domain response (such as  steady-state gain, under- or over-damped response, frequency of any oscillations) which can be derived from this Bode plot.             [3]

(ii)       Consider  a  standard  feedback  control  structure  with  a  proportional

controller  C(s) = 100. Calculate the loop gain L(s)  and  sketch  the Bode plot of its frequency response, based on the plot shown in Figure Q5. Comment on the characteristics of the closed loop system (such as steady  state  gain/error,  bandwidth,  stability  margins  and  damping) which you can derive from the plot of L(s) .                                        [4]

(iii)      The controller  is amended by a derivative term  CD (s) = 100 , so that the new PD controller is C(s) =  100 + 100. How does the loop gain L(s) change, and what is influence of. this term on the characteristics  of the  close  loop  (such  as  steady  state  gain/error, bandwidth,  stability  margins  and  damping)?  For  your  answer  you should sketch the approximate frequency response of L(s), based on the frequency response of the modified C(s).                                     [5]

Q6

(a) Derive the closed-loop equation relating the plant output y and the plant input u to the signals r, d, and n. [2]

(b) Define the sensitivity function S0 and the complementary sensitivity function T0. Sketch the typical plots of |S0 | and  |T0 | against frequency, based on the assumption that the plant has a low-pass character.                                         [5]

(c) Describe the  design  goals which  one  attempts  to  achieve  when  designing closed-loop  feedback  systems.  Describe  factors  which  limit  the  extent  to which these goals can be achieved. Relate your answer to the typical shapes of the sensitivity and complementary sensitivity functions.                                 [7]

(d) Explain what is meant by the vector margin, sm , of a feedback system. Derive an expression linking the vector margin sm  of the closed-loop system to the peak  magnitude   of  the   sensitivity   function  So.  What  is  the  equivalent expression linking the complementary vector margin Tm   of the  closed-loop system to the peak magnitude of the complementary sensitivity function To? Discuss why peaking of |S0 | and |T0 | should be avoided.                                [6]