Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Essay Rubrics

MATH 110 |  Introduction to Number Theory |  Summer 2023

July 19, 2023

Instructions

You are required to submit a minimum of 3 pages of single-spaced, typed English and math, utilizing LATEX for formatting.  For LATEX assistance, please refer to the provided guidelines on the Canvas platform.

Ensure that your essay adheres to a structured format, starting with a title that clearly states your chosen topic. Begin with an engaging introduction that sets the stage for the reader and provides an overview of the topic you’ve selected to explore.  As you progress, provide a comprehensive mathematical description of the subject, delving into key conceptstheorems, and relevant applications.

Emphasize the connections between your topic and number theory while expressing your personal motivation for studying the subject.   Your  essay  must  include  at  least  1 complete proof1 detailed example or application, and 1 reference other than the textbook listed in the syllabus.

Maintain clarity and coherence in your sentences throughout the paper, ensuring that your content remains accessible and understandable to your peers, who comprise the in- tended audience.

Possible Topics

Below are some potential topics you may choose for your project.  However, if you have a different topic in mind that is not listed here, feel free to explore it for your project!

Gaussian or Eisenstein Integers:   These numbers are a subset of complex numbers and have several properties that the integers have; they contain Z as a subset.  One topic of interest here is the prime elements in these sets, specifically the question of whether primes that we know in integers are prime elements in this set.

Transcendental Numbers:   As discussed in class, these are complex numbers that don’t occur as zeros of polynomials with integer coefficients.   A  topic  of interest here will be providing a proof for the transcendence of Euler’s number e, along with some historical comments on the transcendence of π and transcendence theory itself.

Sieve Methods:   This theory includes methods and techniques to sift out primes, a pro- totype being the classical Sieve of Eratosthenes.  A topic of interest here would be to review the Sieve of Eratosthenes as an example and further give an overview of the various sieve methods that currently exist.

Arithmetic Functions:   These are functions with domain the set of positive integers, and we care about properties like multiplicativity for these functions; we saw several interesting examples in class.   A topic of particular interest,  that you saw in a problem set, is the Möbius function, especially its relation to convolution, as seen in another problem set, via the so-called Möbius inversion formula.

Primality Test:   This is a test that checks if a given number is prime or not, an important thing to consider in,  say,  cryptography.   A  topic  of  interest  here  will  be  to  investigate thoroughly one of the basic primality tests - Fermat primality test and discuss related types of numbers to it like Carmichael numbers, and then provide a general overview of other such tests.

RSA  Cryptosystem:   A widely used public-key cryptosystem where the mathematical content of this system firmly relies on the number theory we discuss in this class.  A topic of interest would be to give a brief introduction to cryptosystems, expand on what constitutes the RSA cryptosystem, and give a proof of correctness.

Elliptic Curves:   These are very interesting and famous objects of study in number the- ory.  Much can be done here, but a topic of interest will be to discuss the group structure associated with rational solutions to the polynomial equation that defines an elliptic curve and how one can use this as a step towards something called Elliptic Curve Cryptography.

Roots of Unity:   These are complex numbers that lie on the unit circle in the complex plane and aresolutions to the equation zn  − 1 = 0.  There are several topics of interest here – one can talk about their basic properties, one can talk about the cyclotomic polynomials and go wherever that leads you, etc.

Pells Equations:   These are very classical quadratic Diophantine equations of the form, for any positive squarefree integer D , x2 − Dy2  = ±1. A topic of interest would be to just deal with D  = 2 and discuss the solutions to the resultant equations, on how there are infinitely many of them and how we know exactly what they look like.

Fermat’s Last Theorem:   One of the most celebrated problems in mathematics, it states that there are no other integer solutions to the equation xn  + yn   =  zn   for n  >  2 such that xyz  0. Significant progress had been made much earlier by various mathematicians, especially Sophie Germain, before it was solved.  A topic of interest would be to provide a sketch of Germain’s proof for this equation for n = 4 and then a historical overview of this problem.

Riemann Zeta Function:   A very important and famous object of consideration, espe- cially because of its relation to the Riemann hypothesis. If you’re interested in this, get in touch with me, and we can discuss what can be achieved.

Sums of Squares:   A simple question to ask is - how many numbers can be written as sums of two squares, or three squares, or soon and so forth. There are satisfactory answers to these questions. A topic of interest would be to discuss and answer the question for sums of two squares, this will relate directly to Gaussian integers  (topic one) and primes of a certain form.

Rubrics

Rubric

Excellent (4 - 5 pts.)

Adequate (3 pts.)

Poor (1 - 2 pts.)

INTRODUCTION

The introduction is engag- ing  and  provides  a  clear background,   establishing the relevance of the topic to the course.

The   introduction   offers some    information    but lacks     engagement     in presenting    the    topic’s relation to the course.

The   introduction   lacks relevant information and fails to engage the reader with  the  topic’s  connec- tion to the course.

MECHANICS

The   paper   is   virtually error-free    in    terms    of spelling and grammar.

There are minor spelling or    grammatical    errors that do not significantly hinder readability.

The  paper  contains  nu- merous spelling or gram- matical errors, making it challenging to read.

TYPESETTING

The typesetting of the pa- per, including math sym- bols  and  formulas,  is  ex- emplary.

There   are   minor  type- setting   issues   that   do not substantially impact readability.

The  typesetting  signifi- cantly  hampers  the  pa- per’sreadability.

PROOF

The required proof is well- written,   logically  sound, and easy to follow.

The   required   proof   is mostly  well-written,  but some logical steps may be unclear.

The required proof is ei- ther absent, poorly writ- ten,or challenging to fol- low.

EXAMPLE

The  examples,  including the required one, are well- crafted  and  effectively  il- lustrate the topic.

Examples,  including  the required  one,  are  some- what  unclear  and  may not  effectively  illustrate the topic.

The required example is either  missing  or  inade- quately explained, failing to relate to the topic.

REFERENCE

The   paper   includes  the required reference, appro- priately cited throughout.

The  paper  includes  the required   reference   but lacks  proper  citation  in the content.

The paper does not pro- vide any references.

OVERALL

The  paper  demonstrates a profound understanding of the course material and the project topic.

The paper demonstrates some understanding of ei- ther the course material or the project topic.

The paper does not show a  sufficient  understand- ing of the course material or the project topic.