Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

Department of Physics

Physics 100A

Spring 2023

FINAL EXAM

(1).  (10 points total) Suppose that ! 1(1)# is an eigenvector of a matrix A corresponding to eigenvalue 3, and that ! 1(2)#    is an eigenvector of matrix A corresponding to eigenvalue − 2. Compute A!  !3(4)# .  Justify the steps in your solution.

(2). (15 points total) Let V be a two-dimensional linear vector space with an inner product. Let B1  = {| v1  >, | v2   >} be an orthonormal basis for V. Let  be a linear operator on V, which is represented in the basis  B1  by the matrix

A"  = ! i(2)    i#

(a). (5 points) Explain and justify how you know the operator   is diagonalizable.

(b). (10 points) Diagonalize the operator  by finding a new orthonormal basis B2  = {| e1  >, | e2  >} in which   is represented by a diagonal matrix A!. To receive full      credit your answer must include expressions for (i) the new basis vectors which comprise B2 defined in terms of the original basis vectors which comprise  B1 , (ii) the operator      defined in terms of the basis vectors in  B2 , (iii) the change of basis matrix, and (iv) the    matrix A!  representing the operator   in the new basis.

(3). (25 points total) Let V be a vector space. Consider a Hermitian operator  that is represented in an orthonormal basis {|e1   >, |e2   >} of  V by the matrix H  = ! i(0)    i#.

(a). (5 points) Find the eigenvalues and normalized eigenvectors of the matrix H.

(b).  (5 points) Express the corresponding normalized eigenvectors {|v1   >, |v2   >} of  in terms of the original orthonormal basis vectors {|e1   >, |e2   >}. Do the eigenvectors {|v1  >, |v2  >}  form a basis of V? If so, do they form an orthonormal basis? Justify your answer.

(c). (5 points) Use the results of part (a) to construct the Green’s Function operator  for the linear operator   in terms of the basis vectors  {|e1   >, |e2   >}.   [In part  (e) you will   use the Green’s Function to solve the equation |y  >=  |f  >, for |y  >, where |f > is a   (given) inhomogeneous term.]

(d). (5 points) Find the matrix G that represents the Green’s Function in the basis {|e1  >, |e2  >}.

(e). (5 points) Use the Green’s function to solve for |y  > in the equation:

|y >= |f >

where the inhomogeneous driving term is given by |f  > =  |e1   > +|e2   >.

(4). (25 points total) This problem involves the Sturm-Liouville system:

d zun (x) dxz

λnun (x),                  0  x  1;

dun (0)             dun (1)

dx             ,        dx

(a). (8 points) Identify the Sturm Liouville operator  and write down the appropriate inner product and weight function that makes   Hermitian. Identify the eigenvalues and normalized eigenfunctions of  .

(b). (7 points) Compute the expansion of the function f(x) = x in terms of the eigenfunctions in part (a).

(c). (7 points) Use separation of variable to solve the heat equation for the temperature

profile T(x, t) of a one-dimensional rod, where the ends of the rod at x = 0 and x=1 are   insulated (i.e. no heat flows out of the ends), and the initial temperature profile is given in part (b). This situation is described by the partial differential equation, with boundary and initial conditions as specified below:

aT(x,t) ax

aT(x,t)

at    ,

0 ≤ x ≤ 1,  t ≥ 0

aTx(0),t) = 0,   aT,t) = 0, T(x, 0) = x

(d). (3 points) How does the solution behave as t → ∞ (i.e. what is lim T(x, t))? t→ &

(5).  (25 points total) In this problem you will find the steady state temperature on both   the inside and the outside a sphere of radius  = ' when the surface of the sphere is held at a fixed temperature distribution u(r = 1,θ,φ).

(a). (5 points) The fixed boundary condition for the temperature on the surface the sphere is  u (r = 1, θ, φ) = cos(θ) − 3sin2 (θ). Expand this function as a Legendre series in      x = cosθ. For this expansion, you can use the Legendre Polynomials  r! (cosθ) , the

normalized Legendre Polynomials p! (cosθ) , or the m=0 spherical harmonics Y!,m=0(θ, φ) (whichever you prefer).

(b). (7 points) Solve for the steady state temperature distribution u(r, θ) inside the sphere 0 ≤ r ≤ 1 for the fixed boundary conditions specified in part (a). Note: by symmetry, the solution is independent of φ because the boundary condition does not depend on φ .

(c). (7 points) Solve for the steady state temperature distribution u(r, θ)  outside the sphere 1 ≤ r < ∞  for the fixed boundary conditions specified in part (a).

(d). (6 points) Combine the results from parts (b) and (c) to obtain the complete solution u (r, θ) everywhere in space. Then set θ  = 0 and obtain the radial solution u(r) for that specific angle. Sketch a graph of your result for u(r) for  0 < r < ¥  for the angle θ  = 0.

THIS PROBLEM SHOULD BE TYPED AND SUBMITTED SEPARATELY USING THE EXTRA CREDIT UPLOAD ON GUACHOSPACE.

(6). Extra Credit (5 points). The extra credit will be added to the final exam score, but the minimum passing requirement for the class (average of 40 on the two exams: see course   description) applies to the test scores only, before the extra credit is added in, not to

scores combined with extra credit.

Choose one of the following two reflective questions to answer. Please type your answer, and save it as a pdf, then upload your answer in the Final Exam Extra Credit upload

link, before or after the final exam. The Gauchospace upload for the Final Exam Extra Credit will be available until 9:00 pm on Friday, June 16. To receive full credit, your

answer should be well thought out and at least one half page TYPED (single spaced, 12 point font) in length. Typing a title or retyping the question will not count towards the

length.

1. Advice for Future 100A Students:

Imagine yourself as a Peer Advisor for UCSB students who have taken lower division math and physics classes, and are considering, but have not yet taken this course.

Describe what you found most (i) interesting, (ii) useful, and (iii) challenging about this course. In what ways does the material in this class overlap or complement material the

student has learned or will be learning in other classes at UCSB. Include in your answer   some specific, constructive suggestions for how to prepare for the class and approach the coursework and the covered materials to get the most benefit for the class.

2. How would you describe what you learned in physics 100A and other classes at UCSB on a future job interview?

Suppose you are a finalist interviewing for a job that you are extremely interested in.

Your interviewer has access to your resume and college transcript, but is not trained in  physics. They ask you to describe your experience as a student at UCSB, and how your time spent prepared you for the job you are seeking. They have asked you to give

examples from specific classes (including 100A) to illustrate your main points. What would you say? Make sure your descriptions are appropriate for a non-technical interviewer.

Problem 1

Problem 2

Problem 3

Problem 4

Problem 5

Total