Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ES4E8 Advanced Power Electronic Converters and Devices        Laboratory 1

Module title and code: Advanced Power Electronic Converters and Devices, ES4E8A1 Laboratory Assignment 1

Assignment setter: Dr Marina Antoniou

Assignment Weighting and typical hours work: 30%  of  module.  Typical  hours  of work: 45 hours.

Learning outcomes assessed:

•        Apply  advanced  concepts  through  the  use of device physics in the context of device design.

Context/Introduction/Background  to  the   assignment:  Based  on  material   of  the module and instructions provided below.

Formatting Requirements:  Typed answers  expected. Minimum  font  (times roman) size:  12  pt.  Handwritten  answers  (provided  they  are  legible)  can  be  scanned  and submitted, or a combination of typed and scanned handwritten work. Insert screen-shot pictures in your answers where appropriate.

Submission date/deadline: 12 noon Thursday 23rd   Feb 2023.

Requirements/Task: In this assignment there are THREE questions. Please answer all questions.

Assessment criteria/mark scheme: The marks percentage for each part is shown in the square brackets. Marking is out of 100%.

Feedback format: Your submitted report will be marked electronically. The marks of the various sections will be provided as well as an outline of the answers of the various sections in order to identify where/how to improve.


Question A

A= (last two digits of your university ID number+250)

B= (last two digits of your university ID number×9+800)

1.   Figure 1.1 shows the basic cell structure of a power MOSFET.

Describe the internal resistance components in the power MOSFET on-state operation as shown in figure 1.2 and comment on their effect as the device voltage rating increases. [5%]


2.   Calculate the on-state resistance % contribution of each internal resistance component over the  total on-state resistance for a “A”V breakdown rated MOSFET @ Vgate=15V, Vthreshold= 7V and Vdrain=0.5V (where the value of “A” is defined above). Identify the most important resistance

contributions.

Use the device parameters as given in table 1 (you may find reference [1], section 6.4 & 6.5 useful for this analysis).   [10%]

3.   Calculate the on-state resistance % contribution of each internal resistance component over the  total on-state resistance for a “B”V breakdown rated MOSFET @ Vgate=15V, Vthreshold= 7V and Vdrain=0.5V (where the value of “B” is defined above). Identify the most important resistance

contributions and discuss how these compare to your finding in part (2).

Use the device parameters as given in table 1 (you may find reference [1], section 6.4 & 6.5 useful for this analysis).    [5%]

4.   Using MATLAB (or analogous software) discuss how the variation of Gate electrode width Wg  affects the performance  of the device in part  (3) with  specific reference to  internal resistance components.  The  cell  width  should  remain  constant.  Illustrate  your  answers  by  means  of corresponding plots. [5%]

5.   Discuss  how  a  “B”V  breakdown  rated  IGBT  structure  on-state  resistance  contributions  might change. Assume that the Device parameters remain the same, except for the substrate; now this layer is ann-buffer layer and p+ anode layer (where the value of “B” is defined above). [5%]

6.   Discuss how a “B” V breakdown rated Silicon Carbide MOSFET device would alter the on-state resistance contributions (where the value of “B” is defined above).  [5%]

References

[1] Book “Fundamental of Power semiconductor Devices” B.J. Baliga, Springer International Publishing 2008.


Question B

Ambipolar Conduction (aka Conductivity Modulation)

Conductivity  modulation  is  the  charge  compensation  effect  that  occurs  under  high  level  carrier injection. High level is defined by the rule of thumb that in injection level is > 10% of the background doping level. Both carrier species are equal, this allows the basic transport equations to be modified to produce ambipolar transport. Very low resistance bipolar power devices such as diodes, thyristor and IGBTs use this effect to reduce the on state resistance. Charge is removed slowly by diffusion and recombination controlled by ambipolar diffusion equation.

Figure 2.1: PiN diode On-state Carrier Density Distribution

The idea here is that under such high-level injection conditions, the two equations for electron and hole continuity can be combined into a single equation. This means we only need to solve one equation instead of two. To do this we make the assumption that, we only need solve for on carrier density since:

p(x) = n(x)

where

Which has the general solution:



Where A and B can be found from the appropriate boundary conditions.

Where d is distance from the middle of the device (fig. 2.1) and JT  is the current density

where

Figure 2.2: Simulated silicon PIN Diode


Drift Length = DL= (last two digits of your university ID number×4+100) μm

Current Density JT=50A/cm2

Lifetimes: τ = 1, 3, 10μsec

Mobility of Electrons at T=300°K

μe=1417 cm^2/(Vs);

Mobility of Holes at T=300°K

μp=471cm^2/(Vs) ;

1.   Explain what the difference between bipolar and unipolar devices is. How do we decide which device to use for a specific application? [5%]

Given the theory above,

2.   Use the analytical equations above to calculate and  plot     using    MATLAB    (or     analogous software) the charge concentration across the PIN Diode structure (figure 2.2) for all three ambipolar lifetimes values at room temperature. [10%]

3.   Use the analytical equations above to calculate and  plot     using    MATLAB    (or     analogous software) the charge concentration across the PIN Diode structure (figure 2.2) for an ambipolar lifetime = 1μs at 65° and 125°C. [10%]

4.   Use the analytical equations above to calculate and  plot     using    MATLAB    (or     analogous software) the charge concentration across the PIN Diode structure (figure 2.2) and drift length 2*DL (where DL is defined above) for an ambipolar lifetime=5μs at 125° C. How do the two drift  region  lengths  charge  concentration  distributions  compare?  How  will  this  device performance change under the on-state and breakdown conditions? [5%].

Question C

Figure 3.1 shows the on-state characteristics of a 3.3kV Silicon and Silicon Carbide PIN diodes at 25°C.

The blocking Silicon p-n junction consists of ap-type region containing 1019  cm-3 acceptors (NA) and an n-type region containing of 1014  cm-3  donors (ND). The intrinsic carrier concentration at 300K (25°C) is  1.01 ×  1010  cm-3. Assume that VT, the thermal voltage, (=kB*T/e, where T is the absolute temperature,  kB   is  the  Boltzman  constant  and  e  is  the  charge  on  an  electron)  is  26mV  at  room temperature.

The blocking SiC p-n junction consists of ap-type region containing  1019  cm-3  acceptors (NA) and an n-type region containing also of 1015  cm-3  donors (ND). The intrinsic carrier concentration at 300K (25°C) is 5×10-9  cm-3.

1.   Justify the shape of the two curves given the material properties (i.e. Vo  value and differential resistance (line curvature))? (15%)

2.   Discuss which material you would use for applications of 15A/mm2.  (10%)

3.   Discuss why  SiC  Schottky diodes are preferable for high current applications (>20A/mm2). (10%)

Figure 3.1: The on-state characteristics of a 3.3kV Silicon and Silicon Carbide PIN diodes at 25°C