Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ELEC209P

Answer any THREE questions out of FOUR

1.    Figure 1.1 shows an air heating system used to regulate the temperature in a house. It is a warm air system in which air warmed by a furnace is circulated round the house driven by a fan. The furnace is fuelled by gas. It has an on-off characteristic such that if the gas valve is opened the furnace is on and when the gas valve is closed the furnace switches off.

(a)  Identify the following sets of features of the control system (2 marks awarded for each of the three sets of features):

(i)     Control objective(s) and disturbances

(ii)    Sensors(s)  and  actuator(s)  needed  to  achieve  the  control  objective.  Distinguish between those which are essential and those which might be useful for enhanced performance.

(iii)   Manipulated variable(s) needed to achieve the control objective [6 marks]

(b)  Is the system class zero or class one? Explain your answer.

Hint: Newton’s  law  of cooling  (and  common  sense)  tells  us the house will  lose heat through its walls and that the rate of heat loss is proportional to temperature. [8 marks]

(c)  Draw the block diagram for a basic feedback control system. Explain how your controller would manage the on-off characteristic of the furnace. [8 marks]

(d)  Discuss whether a feedforward configuration has anything to offer to this control system. [3 marks]

2.

(a)  State the final value theorem and explain its derivation. [6 marks]

(b)  The feedback control systems shown in Figure 2.1(a),(b) have a controlled system Go(s)  together with a lead compensator and, in the case of Figure 2.1(b), a lag compensator. Based on Figure 2.1, show that the poles of the closed loop systems are the values of s that  satisfy the  following  polynomial  equations.  Do not  attempt  to  find the numerical values of the poles from these equations [they are given in part (c)].

[8 marks]

(c)  The closed loop poles of the system are:

Find the numerical values of the zeros of the transfer  functions E(s) U(s) for the two systems. Plot pole-zero diagrams for the transfer functions E(s) U(s)  for the two systems . Highlight any closed loop pole and zero that originates from the phase lag compensation. [8 marks]

(d)  If the input is a unit step, show that the use of the phase lag compensator gives the benefit of reducing the steady state error by a factor of 4.7 compared to the case when there is no phase lag compensation.

3.    (a)   In Figure 3.1(a), the displacement of the block on the lefthand side of the spring is x 1    and the  displacement  of  the  block  on  the  right  hand  side  is x 2 .  Both  displacements  are measured from the equilibrium positions of the blocks and they are applied such that the spring  is   compressed  from  both  sides.  The   spring  constant   is K .  Write   down  the expressions for the force exerted by the spring on each of the two blocks. [6 marks]

(b)  In Figure 3.1(b) the velocity of the block on the lefthand side of the damper is dx 1 dt and the velocity of the right hand block is dx 2 dt . The damping coefficient is B . Write down the expressions for the force exerted by the damper on each of the two blocks.

[8 marks]

(c)  Show that the transfer function for the car suspension system shown in Figure 3.2 is:


where x 1  is the deviation of mass M1  from its equilibrium position and f(t) is the force on mass M2 .

Hints:

1.    Useful intermediate results to consider (which must be proven before being used in your answer) are:

2.    Do  not  include  the  force  due  to  gravity  in  the  analysis.  Gravity  determines  the equilibrium position, but does not influence deviations from equilibrium.


4.    (a)

(i)     By making use  of Euler's theorem to  decompose  cos (t ) and  sin (t ) into  complex exponentials, or otherwise, prove that the Laplace transforms of cos (t ) and  sin (t ) (t 0) are, respectively:

(ii)    Explain what is wrong with the following reasoning:

[6 marks]

(b)  Use a partial fraction expansion to determine the time domain signal y (t ) whose Laplace transform is:

What is the value of y (t ) as  t → ∞ ? [8 marks]

(c)  Determine the steady state value for y (t ) by application of the final value theorem to the expressio→n  for Y (s )  in  Q4(c)  above.  Explain  why  the  final  value  theorem  gives  a misleading result in this case. [8 marks]

(d)  Prove that the Laplace transform of a time delay is e-sTd , where Td is the delay.[3 marks]