Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MCEN90038 Dynamics

End of semester 1 2023 – EXAM

Exam Blue

General Instructions:

Follow the submission format instrucons published earlier in the LMS.

If an angle, direcon, or distance is not described, you may define it yourself. However, make sure to state what the declared variables represent clearly in you submission.

Inera tensor component values must be stated and clearly indicated in the problem setup (this part should be done in your handwriten submission). However, your calculaons may treat them as

general terms. Example: bIro(G)d= I0 l         | where I0  =  . But the calculaon can use I0  instead

of the expression.

Describe all your frames, rotaon matrices and relevant posion vectors in the handwriten part.


System 1 [35 points]

An x-ray device is shown inFigure 2(a). We will simplify the structure for the analysis, dividing the system into 2 links (Figure 2(b)).

Link 1 (black) from the base to point B, rotates about the z0-axis with angular velocity ȧ . Assume Its centre of mass (G1) to be located at a distance  from point A in the direcon indicated in the figure. The inclinaon e is a constant.

Link 2 (blue) rotates about point C, with angular velocity Ḟ . Its centre of mass (G2) is located at a distance D from point C .



Assume the inera tensors of the 2 links, in their body centred frames, are:


a)   Determine the me derivave of the linear momentum of link 2 in the frame atached to it.

b)   Determine the me derivave of the angular momentum of link 2 in the frame atached to it.

c)   Draw the free-body diagram of the different components of the system.

d)   Determine the Newton-Euler equaons of link 2.

e)   Determine the equaons of moon of the system.

f)    Assume the me derivaves of the linear and angular momenta of link 1 to be known.

Determine the torque necessary to keep the system rotang with constant angular velocity ȧ  =

0  and Ḟ = 1 .

System 2 [30 points]

The gure shows a simplified model of a simulated amusement park ride. A person will sit inside the cylindrical cabins (green), which rotate (angle e) and translate about the radial axis of the connecng central structure. Assume empty cabins for this problem.

Assume the central point of the central connecon is at point M and the distance from M to the       centre of mass of each cylinder is described by L . The central structure rotates about the vercal axis (z0) with angular velocity Ω . Assume all cylindrical cabins will rotate and translate simultaneously    and in phase.

Hollow Cylinders (inset gure): Inner radius r1, outer radius r2, density p, inner length a, height b

 

a)   Determine the me derivave of the linear momentum of cylinder A in the frame moving with the central structure.

b)   Determine the me derivave of the angular momentum of cylinder A in the frame following the rotaon of the cylinder itself.

c)   Draw the free-body diagram of the different components of the system.

d)   Determine the Newton-Euler equaons of cylinder A. You may choose the frame.

e)   Determine the equaons of moon of the system.

f)    Determine the torque necessary to keep Ω constant.

System 3 [35 points]

A sphere of mass M and radius R can freely rotate about sha AB, of length L. You must define your angle of rotaon. The sha is connected at joint A via an ideal pin. The system precesses about the vercal with constant angular velocity Ω .

The mass of the sha is m1 and it can be considered as a thin rod.

a)   Determine the me derivave of the linear momentum of sphere in the frame atached to the sha .

b)   Determine the me derivave of the angular momentum of sphere in the frame atached to the sha .

c)   Draw the free body diagram of the different components of the system.

d)   Determine the Newton-Euler equaons of the sphere. Now assume the sphere collides with the top wall.

f)    Draw the impulsive free-body diagram of the different components of the system. Include the representaon of the forces in your chosen frame of reference,

g)   Determine the impulse momentum equaons of the sphere and the expression of the coefficient of restuon.