Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MAST90012 Measure Theory, Semester 1 2023

Written Assignment 3

1. Here we consider convolution and Lp-functions with respect to the Lebesgue measure m on Rd .

Let ϕ 1  : Rd  → [0, ∞) be a smooth non-negative function which is supported on the unit ball B1 (0) and satisfies lRd  ϕ 1  = 1. For σ > 0 define ϕσ  : Rd  → [0, ∞) by ϕσ (x) = σ n ϕ 1 (x/σ) so that ϕσ  is supported on the ball Bσ (0) and satisfies lRd  ϕσ  = 1.

Let 1 ≤ p < ∞ and consider any function f ∈ Lp (Rd ). For each σ > 0, let

\

for each x ∈ Rd .

(a) Use H¨older’s inequality to show that ∥fσ ∥Lp   ≤ ∥f∥Lp   for all f ∈ Lp (Rd ).

(b) Show that for each f ∈ Lp (Rd )

lim  ∥fσ  − f∥Lp   = 0.

σ 0+

2. Let X be a set and µbe an outer measure on X . Let µ be the measure defined by restricting µ to the sets which are Carath´eodory measurable with respect to µ.

Arguing as we did in the proof of the Extension Theorem, we can define an outer measure µ+  on X by

µ+ (E) = inf { µ(Ej ) : E  Ej  and Ej  are Carath´eodory measurable w.r.t. µ}

for each set E ⊆ X .

(a) Show that for each set E ⊆ X we have µ(E) ≤ µ+ (E).

(b) For a given set E, show that µ(E) = µ+ (E) if and only if there is a µ-measurable set A such that E ⊆ A and µ(A) = µ(E).

3. Consider the measurable space ([0, 1], B), where B is the collection of all Borel subsets of [0, 1]. m : B  [0, ∞] be the Lebesgue measure and let c : B → [0, ∞] be the counting measure, i.e. c(E) equals the number of elements of E .

Let m × c be the product measure on [0, 1] × [0, 1] as constructed in lecture.  In particular, let (m × c)be the outer measure on [0, 1] × [0, 1] defined by

(m × c)(E) = inf { m(Aj )c(Bj ) : E Aj  × Bj  and Aj ,Bj  B} ,

where m(Aj )c(Bj ) = 0 if either m(Aj ) = 0 or c(Bj ) = 0. Let m × c be the restriction to sets which are Carath´eodory measurable with respect to (m × c)* . (Note that we do not require ([0, 1], B,c) to be σ-finite here.)

Consider the diagonal D = {(x,y) ∈ [0, 1] × [0, 1] : x = y}.

(a) Show that D is Carath´eodory measurable with respect to (m × c)* .

(Hint:  D is in fact a Rσ6 -set, where R is the collection of all finite unions of measurable rectangles A × B for A,B ∈ B.)

(b) Show that if f is the characteristic function of D ,

\[0,1] × [0,1] f d(m × c)  \[0,1]  (\[0,1] f(x,y)dc(y)) dm(x).

4. Prove uniqueness for the Jordan Decomposition Theorem. That is, let ν be a signed measure on the measurable space (X,A).  Show that there is a unique pair of mutually singular measures ν + ,νon (X,A) such that ν = ν + − ν .