Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

ESG111 Final Exam Example

Instruction:

1. Create folder named final in your course drive

2. Submit all requested files in final folder in your course drive

Problem 1-5:  compute the problem by using MATLAB.

DO NOT USE any other applications to find the solutions! DO NOT USE symbolic tool to find the solutions!

SAVE work history in doc. file and add your name&ID in the file

Problem 6:

For script file, write your name & ID in the 1st line

1.   Write your name and ID in the first line on the doc. file and save your entire answer and work history. Name your doc file as ESG111_final.doc” and save the file in the  course drive. (10pt)

2.   Numerically calculate the following integral;

a.   $1.4'(sin' t dt

b.   $67(5)x ' e4 dx

3.   The function, f(x) = sin10x + cos3x has several roots over the range of [0, 5]. You may find the function’s roots graphically by using fplot and fzero.

a.   Find how many roots the above function has in the range of [0, 5] graphically.

b.   Find all the roots in the range of [0 2].

4.   For f(x) = −46 + 45x − 14x'  + 2xE  − 0.075xG , calculate f(1.6).

5.   Idealized spring-mass systems have numerous applications     throughout engineering.  Fig. 1 shows an arrangement of four springs with spring constant of k1, k2, k3, and k4 in series being hanged from the ceiling with a mass of M.

At equilibrium, force-balance equations can be developed

defining the interrelationships between the springs,

k' (x' xP ) = kPxP

where x1, x2, x3, and x4 are the position (distance) from the ceiling. If k1, k2, k3, and k4 are 15, 5, 7.5, 22.5 N/m respectively and the       mass of the object is 20 kg, calculate x1, x2, x3, and x4. Here, set        gravity constant (acceleration due to gravity) as g=9.81 m/s2.

k1

k2

k3

k4

x4

Mg

6.   The braking distance of a car depends on its speed as the brakes are applied and on the car’s braking efficiency.  A formula for the braking distance is:

db  =

where db is the braking distance, v is the car’s speed, µ is the braking efficiency and g is the acceleration due to gravity (9.81 m/s2).

6-a. Write the script to simulate the braking distance or the braking efficiency. Name the script as “BrakeTest.m” . Script BrakeTest.m should do all the tasks from 6-a to 6-c.

•   The script ask the user to calculate either db or  µ

•   The script calls functions

- For db calculation, write a function named fn_BrakeDist

- For µ calculation, write a function named fn_BrakeEffic

•   The script prints the result in a sentence format as shown below with 2 decimal place when the output is a single value.

>> BrakeTest

Choose which simulation you want

Let's calculate braking dinstance!

Enter the vehicle's speed in m/s: 50

Enter the braking efficiency: 0.7

The braking distance is 3.64 m

when the vehicle's speed : 50.00 m/s and the braking efficiency : 0.70

6-b. Calculate the braking distance when the vehicle runs at 80 m/s with the braking efficiency of 0.8

6-c. When the vehicle runs at 100 m/s, simulate how the braking efficiency changes with the braking distances from 5m to 10m.

6-d. Plot the braking distance vs braking efficiency when the vehicle runs at 100 m/s. The range of the braking distance is from 5m to 10m with every 0.5m. From the  graph, what is the braking distance when the braking efficiency is 0.9?

Submit:

- Script file: BrakeTest.m (Add your name in the comment line)

- Function file: fn_BrakeDist.m & fn_BrakeEffic.m

- Graph: BrakingEfficiency.jpg

- Result 7-b, 7-c & 7-d in doc file