Hello, dear friend, you can consult us at any time if you have any questions, add WeChat: daixieit

MATH 4111

TAKE-HOME EXAM 3A

PROBLEM 1.

(Diverse questions.) Throughout, (x,d) is a metric space and (E,‖ . ‖E) is a normed vector space (When the context is clear, the subscripts‘x’and‘E’are removed from the distance/norm.)

1. Prove that xis connected if and only if every continuous function x → {0,1} is constant. (Note. {0,1} could be replaced by any discrete set).

2. Here is an attempt to prove that ℝ2 is not homeomorphic to ℝ3 : suppose there is such a homeomorphism 由 ∶ ℝ2 → ℝ3 , and consider a line L in ℝ2 . Then ℝ2 ∖L is not connected whereas ℝ3 ∖(L) is. Is this reasoning correct? (If not, point out its flaw.)

3. Let (Y,dY) be another metric space. We define the following distance on x × Y d((x,y),(x,y)) = max(d (x,x),dY(y,y)).

(a) Check that d is a distance on x × Y.

(b) Check that the open sets in x ×Yare exactly the sets of the form U ×V, where U and V are respectively open in x and

.

(c) Let A ⊂ xand B ⊂ Y be connected sets. Prove that A × B is connected in x × Y.

(d)  Same question if we replace connected with compact.

Hint. It is easier to use subsequences...

(e) (Bonus). Prove that a countable product of compact metric spaces is compact.

4.  (a) Suppose that xis connected and let f ∶ x → Y be a continuous function. Prove that if f is locally constant, then it is constant.

Note. f locally constant means thatfor every x0 ∈ x, there exists an open set U containing x0 such that f|U is constant. (b) Determine all the continuous functions f ∶ ℂ → ℂsuch that for all z ∈ ℂ, f(z)2 = z2 .

5. Let K,L be compact sets in E.    (a) Prove that K + L is compact.

(b) Define the distance between Kand L as

d(K,L) = inf{‖x y‖; K,y L}.

Prove that if K and L are disjoint, then d(K,L) > 0.

6.  (Homage to a scribe). Let Mn (ℝ) be the space of n×n, equipped with any norm you like (as you will come to know soon,

they will all be equivalent in this case).

(a) Prove that SLn (ℂ) is path-connected.

(b) Show that SOn (ℝ) = {A ∈ GLn (ℝ); tAA = In , det(A) = 1} is compact.

(c) A matrix A ∈ Mn (K) (K = ℝ or ℂ) is said nilpotent if there exists p ∈ ℕ such that Ap  = 0. Prove that the set N of nilpotent matrices is path-connected.

Hint. Considerfirst, for any nilpotent matrix A ∈ N, the line segment between A and the zero matrix.

(d) Denote Projn = {P ∈ Mn (ℝ); P2 = P} the set of projection matrices inMn (ℝ). Prove that if two projection matrices P and Q are endpoints of a continuous curve in Projn , then rank(P) = rank(Q).

8. Let Kbe a compact in E, and let p ∶ K K be function such that ‖f(x) − f(y)‖ < ‖x − y‖, for every x ≠ y ∈ K. Prove that f admits a unique fixed point inK.

PROBLEM 2.

Let E be a normed vector space. The goal of this problem is to examine the specificity of finite-dimensional situations.

Part I. Equivalence of norms in finite dimensions.

1. Prove that a subset of ℝn is compact iff it is closed and bounded.

2. Prove that the unit sphere S in (ℝn,‖ . ‖ is compact.

3. Prove that any linear map p ∶ (ℝn,‖ . ‖ → E is continuous.

4. We now suppose that pis in addition bijective (i.e an isomorphism, implying here that Eis also finite-dimensional). Prove that p is a homeomorphism.

Hint. Prove that thefunction p(.)is bounded below on the unit sphere S.

5. Suppose E is finite-dimensional, and let ‖ . ‖  be another norm on E. Prove that ‖ . ‖ and ‖ . ‖  are equivalent.

6. Deduce that any finite-dimensional normed space is complete, and that finite dimensional subspaces of any normed space are closed.

Part II. Compactness of spheres vs dimension.

1. We want to prove that if the unit sphere S ofEis compact, then Eis finite-dimensional. We shall proceed by contradiction, and start assuming that E is infinite-dimensional and that S is compact.

(a) As we suppose that S is compact, justify that there exists a finite set of vectors (xk)1≤k≤p such that (B(xk,1/2))1≤k≤p

cover S.

(c)  Let F = span{xk ; 1 ≤ k p}. Justify the existence of a vector x such that d(x,F) > 0, and of a vector f ∈ F such that d(x,F) ≤ ‖x − f‖ ≤ d(x,F).

Denote  = ‖x − f‖ .

(d) Justify that there exists 1 ≤ k0 ≤ p and ℎ ∈ E with norm ≤ 1/2 such that x = f +入xk +入ℎ .

and derive a contradiction.

2. Consider the space E = ℓof bounded sequences equipped with the sup-norm ‖ . ‖ (which is infinite-dimensional). Prove that the unit sphere in ℓnot compact (despite being closed and bounded).

Consider the sequence (6(n))n≥1 ⊂ ℓ, where 6(n) the sequence whose n-th component is 1, with all other components being 0.